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The next two Advanced Technology platforms for the ASC program will feature complex memory hierarchies
—in the Trinity supercomputer being deployed in 2016, Intel’s Knights Landing processors will feature 16GB
of on-package, high-bandwidth memory, combined with a larger capacity DDR4 memory and in 2018, the
Sierra machine deployed at Lawrence Livermore National Laboratory will feature powerful compute nodes
containing POWERY9 processors with large capacity memories and an array of coherent GPU accelerators
also with high bandwidth memories.

In this ASC L2 milestone we report on a spectrum of studies investigating the potential performance
opportunities of multi-level memory systems which might utilize hardware accelerated caching or, alterna-
tively, entirely software driven management either by an application or allocation/memory aware runtime.
As the basis for our exploration we utilize several of the APEX ASC benchmarks currently planned to be
used in the ATS-3 Crossroads procurement in late 2016.

Our studies investigate issues of system balance, memory size, cache sizes and a number of other key hard-
ware parameters. We show that although a number of benchmark kernels are not bound by the bandwidth
of memory in the system and so experience no significant improvement in runtime from higher-bandwidth
or on-package memories, other kernels, particularly those relating to sparse linear algebra can experience
significant acceleration due to their poor data reuse properties and low ratio of compute operations.

We conclude that multi-level memories provide a very varied picture for the performance of codes on
future systems and highlight areas where application programmers and computational scientists may want
to focus their efforts.
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Chapter 1

Introduction

As new main memory technologies appear on the market, there is a growing push to incorporate them into
future architectures. Compared to traditional DDR, DRAM, these technologies provide appealing advantages
such as increased bandwidth or non-volatility. However, the technologies have significant downsides as well
which obviate the ability to completely replace DDR, DRAM. High bandwidth stacked DRAM variants such
as hybrid memory cubes (HMCs) and high-bandwidth memories (HBMs) require complex manufacturing
processes which drive up cost and also can have increased latency compared to traditional DDR DRAM.
Non-volatile technologies such as FLASH and PCM have higher latencies than DRAM while technologies like
STT-MRAM and PCM have high write energy needs. In addition, all three technologies suffer from wear-
out. As such, none emerge as a clear winner compared to DRAM. For these reasons, there is an increased
focus on the concept of multi-level memories (MLM), or mixing different memory technologies in a single
memory system with the ideal MLM system providing the advantages of all with the disadvantages of none.
For example, a system might incorporate a small amount of HMC to support high bandwidth accesses but
to reduce cost, use DDR DRAM for capacity. The same system might also add a third non-volatile layer
which can selectively back up data from the volatile memories to delay wear-out, while improving reliability
and reducing the cost of operations that would typically use the disk (e.g., checkpoints).

In this report, we analyze the effect of next-generation MLM architectures on the performance of key
ASC application kernels and algorithms. In particular we look at application performance with a two-level
memory system consisting of high-bandwidth HMC-like memory and lower-bandwidth DDR DRAM.

1.1 Multi-Level Memory Systems

1.1.1 The Case For...
Economic Impacts

The primary motivation for a multi-level memory is economic. Replacing DDR main memory with a combi-
nation of memory technologies may enable a high bandwidth and and high capacity memory system at low
cost. Application analysis (Section 4) indicates that, for many applications, a relatively small percentage of
the application’s main memory footprint accounts for most cache misses. If this portion were stored in fast,
expensive (e.g. 3D stacked) memory and the bulk of data kept in slower, cheaper (e.g. DDR or Flash[17])
devices, it may be possible to realize the “best of both worlds.”

Table 1.1 shows a selection of memory technologies which may comprise a future MLM system. Because
some of the stacked memory technologies have not started shipping in quantity, prices are only estimates
and bandwidth may change as these technologies evolve. However, this table shows the wide set of device
criteria and trade-offs.
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Table 1.1: Emerging memory characteristics

Memory Technology | Interface, Packaging, Device Relative Cost | Typical Bandwidth / latency
Per Bit

DDR4 DRAM Parallel multi-package DRAM | 1 17 GB/sec (DIMM Module),

3ons

Flash Memory Multi-package Non-volatile 0.15 2-3 GB/sec, 20-100us

HMC Serial 3D Stacked DRAM 3-57 160-240 GB/sec, 40ns?

HBM Parallel 3D Stacked DRAM 2-47 128 GB/sec, 35ns?

Wide 10 Parallel 3D Stacked DRAM 37 51 GB/sec, 40ns?

Table 1.2: Possible memory system cost breakdown

H Memory \ Size Relative Cost/Per Bit | Relative Total Cost H
HMC 5% 3.0 0.15
DDR 30% 1.0 0.3
Flash 65% 0.15 0.1
Total 0.54
Analysis

Consider an architecture with a multi-level memory hierarchy based on the technologies from Table 1.1 and
optimized for an application like Lulesh (Figure 1.1). The 5% of memory pages that dominate memory
accesses could be placed in a small HMC-like memory sized to fit. An additional 30% could be placed in
conventional, low-cost DDR, and the “long tail” of infrequently touched memory pages could be placed in
non-volatile Flash. Using the cost and bandwidth estimates from Table 1.1, we can estimate the rough cost
of the memory system and an upper bound on available “average” bandwidth!.

Such a memory system could cost about half of a conventional DDR~only memory system (Table 1.2).
Since almost half of memory accesses would go to the HMC, the overall “average” bandwidth would be
increased (Table 1.3). The majority of remaining accesses would go to DDR, so their performance would
be no worse than a conventional DDR-only system. The small portion of accesses that would go to Flash
would be slower, but if the latency could be masked (perhaps with intelligent prefetching or application
modifications), this may not have a large performance impact. The end result is a memory system that
offers significantly increased effective bandwidth and costs about half of a conventional (DDR) system.

1The average “effective bandwidth” here is computed as the harmonic mean, weighted by the number of requests, and
assuming three independent channels of the listed bandwidth.

Table 1.3: Possible memory system “average” bandwidth

Memory | % of Memory | Bandwidth
Accesses

HMC 49.4% 240 GB/s

DDR 25.5% 17

Flash 25.1% 3

Effective Avg. 29.78
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1.1.2 The Case Against...
Economics

The biggest potential pitfall for MLM is also economic. Used improperly, MLM has the potential to increase
cost and decrease performance. Because some high-performance memory technologies (such as HMC) cost
more than commodity DRAM, a memory system which relies too heavily on them will cost more than a
conventional memory system. If that memory system is not managed properly, it may not be able to take
advantage of the faster memory and will not justify the cost. Similarly, overuse of cheaper non-volatile
memory may significantly degrade performance[8].

A related issue is that application diversity implies that no single mix of memory technologoies and sizes
will be optimal for all applications. As such, while a given MLM system might be cost-effective for some
applications, it may cost more and/or reduce performance for another set of applications. As such, one
must carefully consider the applications that will be running on the architecture, and potentially tune those
applications to the architecture, to ensure both performance and cost effectiveness.

Management

In addition to economics, a major impediment to successful deployment of MLM technology is its manage-
ment. Software will need to be modified to place commonly used data in the fast “near” memory and less
frequently used data in the “far” slow memory. Alternately, the operating system, runtime, or hardware
will have to transparently move data from one memory level to the other by predicting future application
requirements.

All of these approaches have substantial costs. Modifying applications or runtimes requires programmer
effort, insight, and will probably require a new generation of analysis tools. Adding hardware to manage
MLM will incur substantial design costs as well as use additional chip area, increasing cost and possibly
power.

Latency

Finally, the simplistic bandwidth analysis presented in Section 1.1.1 only focuses on the bandwidth of new
memory technologies. This is insufficient because of the unusual latency characteristics these technologies
present. For example, HMC-like memories offer dramatically higher bandwidth and throughput, but their
latency is not much better than conventional DDR memory and can even be worse. Non-volatile memories
offer lower bandwidth, but also much higher latency (often by orders of magnitude). Additionally, the latency
of NV memories is often asymmetric?. Considering not only bandwidth but latency in data placement further
complicates MLM management. However, if data placement is not properly managed, the potential of MLM
can be squandered.

1.2 Three Paths to MLM Management

The memory characteristics of applications of interest to the DOE vary considerably. Figure 1.1 shows the
number of post-cache references to different 4K memory pages across three applications. Even this small set
exhibits substantial diversity. MiniAero (leftmost graph) shows a small number of well defined regions which
are highly accessed. Lulesh shows a large number of regions. RSBench (rightmost) has a very irregular
access pattern without well defined regions.

2Different read and write latencies.
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Figure 1.1: Address histograms sorted by address

Because of this application diversity and the trade-offs inherent in different management policies, we
believe there is no “One Size Fits All” solution for managing MLM systems. Thus, we explore three paths:
Algorithmic, Manual, and Automatic Management.

1.2.1 Algorithmic

Algorithmic management of MLM requires restructuring and rewriting the fundamental algorithms and/or
data structures of a code to take advantage of multiple levels of memory. Algorithmic management requires
a high level of programmer effort, but has a high potential to improve performance. A disadvantage of
the algorithmic approach is that it may require rewrites of applications whenever new levels of memory are
added. Additionally, multi-physics applications that contain several algorithms (often contained in separate
libraries) may be difficult to adapt to this approach. However, it may be possible for algorithmic restructuring
to be combined with other approaches to provide “hints” to the runtime or hardware about data placement.

A detailed analysis of algorithmic restructuring is beyond the scope of this document. However, an
application of this approach can be found in a previous paper[1].

1.2.2 Manual

Manual management of MLM requires the programmer to identify blocks of application memory (usually
malloc() allocations) which should be stored in a given level of memory. This approach is less invasive
than algorithmic restructuring, but does require substantial programmer effort to identify and “tag” critical
memory regions for placement in fast memory.

An interesting aspect of manual management is that programmer intuition about which memory regions
are most critical is often incorrect. Many frequently accessed data structures are are simply moved into
the system’s SRAM caches® and benefit minimally from being placed in faster memory. For example, a
thread’s stack is accessed very frequently, but produces very few cache misses to main memory. Instead,
higher performance is achieved by identifying regions which are accessed frequently, but not too frequently.
To accomplish this, new program analysis tools will need to be produced.

Chapter 4 covers manual MLM management and introduces MemSieve (Section 4.2), an analysis tool to
aid in identifying memory critical regions of an application.

3e.g. L1 or L2 cache

14



1.2.3 Automatic

Automatic management of MLM requires specialized hardware which tracks main memory accesses and co-
ordinates movement of data between different layers of memory. This approach has the benefit of minimizing
programmer effort, but does require extra hardware. This hardware requires tables to track accesses, DMA
engines to transfer between layers, and a TLB-like structure to determine in which memory level a given
address resides. Together, these structures could be power- and area-hungry, increasing cost.

An interesting finding of our analysis of automatic management policies is that they differ from conven-
tional caching policies. Specifically, most cache policies focus on replacement — deciding what to remove
from a cache when you need to add data to it. In contrast, MLM is much more sensitive to addition policies
— deciding if it is worth bringing something into the “fast” memory when it is accessed. This is because the
latency of “fast” memory is so similar to that of conventional DDR DRAM.

Chapter 5 explores automatic management.

1.3 Roadmap

Chapter 2 discusses the methodology used in experiments in this report. Chapter 3 discusses a design
space exploration of HMC different configurations. Chapter 4 covers manual MLM management approaches.
Chapter 5 covers automatic MLM management approaches. Finally, Chapter 6 presents conclusions and
future work.
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Chapter 2

Methodology

In this chapter we present our experimental methodology. As mentioned in the previous chapter, we analyze
the performance of ASC codes at the node level on a two-level memory system with near HMC and far DDR.
Because the hardware and software infrastructures do not yet exist for the architectures and management
strategies we are evaluating, we primarily employ simulation. However, we do use real hardware when avail-
able to validate simulation results. In Section 2.1 we present the applications studied and in Section 2.2 we
describe our simulation infrastructure including simulation validation studies and how we enabled simulation
at scale. Finally, we present the two architectures used throughout our studies in Section 2.2.2.

2.1 Applications

A major call in this milestone was to analyze the impact of MLM on key kernels and algorithms found in
ASC codes. To that end, we selected four mini-apps from the APEX benchmark suite. This suite is designed
to be used by vendors and labs to evaluate proposed systems for the 2020 Crossroads/NERSC procurement.
As such, the mini-apps cover a wide variety of algorithms used across multiple labs. By studying these
applications, we hope to gain insight that can be used to steer procurement decisions, enable meaningful
interaction with vendors about future architectures, as well as assist application developers in effectively using
systems with MLM. For this milestone, we selected four applications, MiniPIC, PENNANT, HPCG, and
SNAP. Additionally, to increase confidence that our results translated to real systems, we opted to simulate
these applications at larger scales than have previously been attempted. In this study each benchmark is
sized to yield a data footprint of 1GB to 8GB, depending on the particular experiment. Simulating at this
scale required a number of simulator improvements (Section 2.2) as well as a sampling methodology which
we will discuss in the following subsection. The input parameters and memory usage for each application is
shown in Table 2.1. A brief description of each mini-app is provided below.

MiniPIC [2] uses the particle-in-cell (PIC) method to solve the discrete Boltzman equation in an electro-
static field in an arbitrary domain with reflective walls. It solves this equation using the following algorithm
on an unstructured mesh. Particles are weighted to the grid as a charge density and Poisson’s equation is
solved. The electric field is then calculated and weighted to the particle locations. Finally, the particles
are accelerated and moved to new locations. As particles interact with each other and walls, new particles
may be created. This process is repeated in each time step. MiniPIC uses the Trilinos Tpetra library for
matrix and vector operations. For scalability at a high level, MiniPIC spreads the field over MPI ranks; once
a particle cannot move any farther in its rank, it moves to a neighboring one. For node-level parallelism,
MiniPIC employs threading via the Trilinos Kokkos package. Kokkos enables performance portability by
allowing users to select architecture-specific threading models (e.g., CUDA or OpenMP). In this study we
use the OpenMP backend and do not use MPI. MiniPIC was developed at Sandia National Laboratories.

PENNANT [5] is a hydrodynamics algorithm which uses Lagrangian and staggered-grid methods. The
algorithm is implemented over a 2D unstructured finite-volume mesh. For parallelism, PENNANT does
geometric domain decomposition across MPI ranks and, at the node level, employs OpenMP threads to
divide the local mesh into (almost) independent computational chunks. PENNANT was developed by Los
Alamos National Laboratory. During our analysis we identified that PENNANT has a significant number of

17



Table 2.1: Application parameters

’ Application \ Version \ Input \ Memory \ Parameters
MiniPIC APEX release | big 8G Nx=Ny=Nz=T7; --dt=0.5 --tfinal=2.0
on 2/26/16 --nparts=8000
MiniPIC APEX release | small 1.8G Nx=Ny=Nz=4; --dt=0.5 --tfinal=2.0
on 2/26/16 --nparts=8000
PENNANT | 0.9 big 8G leblancbigx6 (same as default leblancbigx4 with
‘meshparams 960 8640 1.0 9.0’ and ’dtinit 1.67e-4’
PENNANT | 0.9 small 1G leblancbigx6 (same as default leblancbigx4 with
‘meshparams 320 2880 1.0 9.0’ and ’dtinit 5.e-4’
HPCG 3.0 big 8G nx=272, ny=272, nz=136
HPCG 3.0 medium | 4G nx=192, ny=192, nz=136
HPCG 3.0 small 1G nx=112, ny=112, nz=112
SNAP 1.06 big 8G APEX ’in_s’ input modified with npey=1, npez=1,
nx=128, ny=16, nz=20, ichunk=16
SNAP 1.06 small 1G APEX ’in_s’ input modified with npey=1, npez=1,
nx=32, ny=12, nz=16, ichunk=16
MiniFE 2.0 small 11M -nx 30 -ny 30 -nz 30
Lammps 2/16/16  re- | small 25M -i in.eam -sf omp
lease
Lulesh 2.0.3 small 10M -s 20 -i 10 -r 11
CoMD 1.1 small 19.56M --nx 25 --ny 20 --nz 20 --nSteps 5

small allocations (shown later in this report). Although we have not modified the code for the remainder of
this study, in part to ensure we analyze the ezisting code, the use of an optimized allocator or memory pool
scheme could significantly improve the performance of PENNANT on some architectures.

HPCG [4] is an open-source benchmark that was developed as an alternative method to High Per-
formance LINPACK (HPL) for ranking HPC systems. HPCG does a fixed number of conjugate gradient
iterations using a simple multigrid preconditioner. Like the previous applications, HPCG uses both MPI and
OpenMP parallelism. In particular, OpenMP parallel for loops are used for many of the vector and matrix
operations. Additionally the SpMV algorithm is threaded over matrix rows.

SNAP [18] is representative of discrete ordinate neutral particle transport applications. Although it
implements no ’real’” physics, SNAP was developed to mimic the computational workload, data layout,
memory usage, and communication patterns found in real applications. SNAP executes a number of timesteps
which are structured in a two level nested loop. At each timestep, the outer loop executes until either a
set number of iterations have been executed or convergence is reached. Likewise, within each outer loop
iteration, an inner loop is executed until a set number of inner iterations have been executed or convergence
is reached. The majority of computation occurs within inner loop iterations, however outer iterations do
compute an outer source sum as well as check for convergence. SNAP uses both MPI and OpenMP for
parallelism. At the node-level, OpenMP parallel loops are used for the convergence testing functions, to sum
inner and outer sources, SNAP was developed by Los Alamos National Laboratory.

In addition to the above mini-apps, we also used a number of other applications for early design space
exploration studies and some validation work. Unlike the previous applications, we do not execute these
applications at scale, enabling us to quickly prune the design space. For validation in particular, we used the
STREAM benchmark which exercises system bandwidth. For early analysis studies, we used Lammps[13, 14],
a molecular dynamics application; MiniFE[6], an unstructured implicit finite element code; Lulesh[10], a
hydrodynamics code; and CoMD[6], a molecular dynamics application. Each application was executed with
16 threads. Additional parameters and the memory footprint is listed in Table 2.1. These latter mini-apps
were selected because they exhibit a diverse set of main memory access patterns[8]. MiniFE has a small
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number of memory regions (contiguous pages) with similar access characteristics and a low Gini coefficient,
indicating a relatively equal number of accesses per page. Lulesh has multiple different regions and a high
Gini coefficient, indicating a small set of pages that are accessed disproportionately. CoMD and Lammps
have more irregular access patterns.

2.1.1 Methodology for Simulating at Scale

Although we made numerous scalability improvements to the simulator (discussed in Section 2.2), simulating
the APEX mini-apps in full at the scales shown in Table 2.1 would require weeks to months or more. Thus, to
enable simulation at those scales, we adopted a sampling methodology. For each application we sampled one
to two iterations of the main computational loop at each of the beginning, middle, and end of the application’s
execution. For SNAP, we considered the inner loop to be the main loop. For HPCG, we consider iterations
of the main CG loop, including the preconditioner. For PENNANT, we look at iterations of the main
event loop in the Driver class. Finally, in MiniPIC, an iteration is a timestep. Specific parameters for this
sampling are shown in Table 2.2 for the different problem sizes shown earlier. For HPCG, the sampling is
the same for all problem sizes. While this method allowed us to simulate PENNANT, HPCG, and SNAP
in a reasonable time frame, additional sampling was needed for MiniPIC. As described above, during each
timestep, MiniPIC does a number of operations on the particles. Therefore we further divided a timestep
into three parts. Particle charge weighting and solve fall in the first part, charge. The second part, field
includes the electric field calculation and weighting. Finally, the third part, move, contains the particle
acceleration and move functions. Even so, we were unable to simulate field and move in full. Instead we
measured over the calculations for the first N particles, as shown in Table 2.2. We used the same ’N’ values
in the begin, middle, and end samples so we show them only for the beginning sample in the table.

Table 2.2: Application samples

Application | Begin (big) Middle End (big) Begin (small) Middle End (small)
(big) (small)

MiniPIC t=0.0; field | t=0.5 t=1.5 t=0.0; field | t=0.5 t=1.5
N=10M; move N=1.5M; move
N=5000 N=300K

PENNANT | cycles 0-2 5000-5002 | 11100-11102 | 0-2 3700-3702 7470-7472

HPCG iterations 0-1 24-25 49-50 0 25 50

SNAP inner=1, i=4, o=4, | i=3, o=h, | i=1,0=1,t=1 | i=4, o=4, | i=3, o0=j,
outer=1, t=3 t=8 t=3 t=8
timestep=1

Without simulating more of the application, we cannot be certain that an averaging the samples accurately
reflects the average application performance. Therefore in our studies we will combine samples only when
they are nearly identical, otherwise results for each each sample will be given. In general, HPCG’s and
PENNANT’s samples were very similar. In SNAP, the beginning sample differed from the latter two samples
which were similar. Finally, in MiniPIC, the samples across timesteps were similar, but the samples within
timesteps tended to differ.

2.2 Simulation

Having defined the applications, we now discuss our simulation infrastructure. We used the Structural
Simulation Toolkit (SST) [15] version 6.0 for this study. SST is a parallel discrete event simulation engine
developed at Sandia. In addition to providing a simulation engine, SST also includes a number of architectural
component models (e.g., processors, networks, memories) that can be connected to form different simulated
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system architectures. An example of how an architecture might be constructed from individual components
is shown in Figure 2.1. We describe the components used in this study below.

We used the Ariel processor model for our multicore processor. Ariel consists of two parts that interact
via a shared memory region. The first is a PIN tool that utilizes Intel’s PIN framework [11] to instrument a
native binary. As the binary runs on the host processor, Ariel’s PIN tool intercepts memory instructions and
passes them to the second part, the simulated processor. The simulated processor implements multiple cores,
one per thread. It also models a page table manager which manages memory allocation and deallocation
as well as virtual-to-physical address translation. The queue between the simulated processor and the PIN-
instrumented binary enables the simulation to stall the binary execution when it runs too far ahead of the
simulation. As such, Ariel allows the use of native binaries, is fairly lightweight, and accurately models
memory system traffic although it does not model the full execution pipeline and functional units. To
approximate computation, Ariel uses no-ops when there are no memory instructions to execute (i.e., the
application is tied up in computation). Figure 2.2 illustrates how Ariel fits into the larger simulation.

MemHierarchy is a collection of memory component models including caches, buses, directory controllers,
and memory controllers. MemHierarchy is a cycle-level model that provides highly flexible cache topologies
with directory-based coherence (MSI and MESI). In addition to these components, MemHierarchy imple-
ments memory controller interfaces, called memory backends, to a number of memory simulators. To model
the DDR in this study, we used the DRAMSim simulator developed at University of Maryland. To model
HMC, we used Texas Tech’s Goblin HMC simulator and VaultSim, a generic vaulted memory component
provided by SST.

For the on-chip network (NoC) model, we used SST’s Merlin component. Merlin is an flexible, cycle-
level network simulator that can be used to model large scale intra-node and off-chip networks as well as
the smaller on-chip networks needed for our single node studies. Merlin can implement arbitrary network
topologies and models traffic at the flit level.

In the following section we describe the scalability, performance, and functional improvements that were
necessary for simulating MLM at the scales presented in the previous section. We then discuss the two
architectures we considered along with their simulation parameters. Finally we present the results of some
validation studies.
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2.2.1 Simulation Improvements

To enable scalable simulation, we made a number of improvements to the Ariel and MemHierarchy compo-
nents. To reduce execution overhead, we re-wrote the MemHierarchy caches, directory, and memory NIC to
be primarily event driven instead of clock driven. While clocks are still used, they are deactivated unless
events need to be handled. This change reduced run time by approximately 30% for the STREAM bench-
mark. The second major improvement involved streamlining and reorganizing code in both MemHierarchy
and Ariel to eliminate unnecessary compute. We found that these changes reduced runtime by a further
5-15% (depending on the change). Additionally, to reduce the memory overhead, we added the option to
simulate without backing the memory system (i.e., tracking memory values at the memory). For simulations
with Ariel where simulated data values do not affect the application execution, we can reduce the footprint
from the size of the simulated memories (e.g., 10s of GBs) to one GB or less. All of these improvements
were incorporated into the SST 6.0 release.

In response to the validation studies described next, we also made some simulated performance improve-
ments. This included support for fine-grained address striping across memories, eliminating a bottleneck at
the memory NIC which handles address to destination translation, and improved control over throughput
at the memory controller. We also fixed a number of performance bugs that had not been seen at smaller
simulation scales. One significant bug was that the cache set index calculation at cache arrays was not
distributed-cache aware leading to unused cache sets. In turn, depending on the number of cache sets and
the number of distributed cache slices in a system, the distributed cache capacity was effectively lowered.
Fixing these bugs and adding the additional capabilities allowed us to realistically model real architectures.

Finally, to support multi-level memory, we added a number of capabilities in Ariel to allow applications
to manage the memory. We extended the Ariel API which provides applications with ‘hooks’ to control and
interact with the simulation (e.g., start the simulation, trigger a statistics dump, get the simulated time,
etc.) with operations for allocating memory in specific memory pools. While multi-level memory refers to
separate memory types as “levels”, Ariel operates with the concept of memory “pools”. Each pool can be
targeted at a separate memory and the new API calls allow the application to allocate and free memory
directly in particular pools as well as to flag that upcoming mallocs should be allocated to a specific pool.

2.2.2 Architectures

As mentioned in the introduction, to determine whether applications responded similarly to the presence of
multi-level memory independent of the architecture, we studied two architectures with completely different
network topologies, processor capabilities, and memory hierarchies. Each architecture reflects a prevailing
design strategy found in real hardware. The first, heavyweight architecture, has a few (i.e., 8-16) large,
powerful cores connected to a deep cache hierarchy. Many traditional architectures, such as the Intel Xeon,
IBM Power, and AMD Opteron fall in this category. The second architecture, lightweight features many
less powerful cores with a shallower cache hierarchy. An example of this kind of architecture would be the
Intel Xeon Phi. Heavyweight architectures tend to maximize single-thread performance while lightweight
architectures are designed for high throughput. The specific architectures studied here are shown in Fig-
ure 2.3. The simulation parameters are given in Table 2.3. Note that the purpose of studying these two
architectures is not to determine which of the two paths is better. Rather we seek to determine how different
architectures affect applications’ memory access patterns and ability to use multi-level memory. Accordingly,
we do not attempt to equalize the available memory bandwidth in the systems or otherwise single out the
effect of particular architectural features. In terms of real hardware, the lightweight model resembles an
Intel Knights Landing (Xeon Phi) while the heavyweight model is similar to the Intel Sandy Bridge (Xeon)
architecture.
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(a) Heavyweight architecture (b) Lightweight architecture

Figure 2.3: Architectures studied

Table 2.3: Simulation parameters

Architecture \ Component \ Parameters

Processor 8 cores, 2.66GHz, 3 reqs/cycle
Heavyweight Caches Private 32KB L1 (8-way assoc, 4 cycles), Private 256 KB L2 (8-way assoc, 6
cycles), Shared distributed L3 with 8 2MB slices (16-way assoc, 12 cycles),
MESI
Memory 2 HMC @ 160GB/s, 2 DDR @ 20GB/s, capacities vary by experiment
Network Ring (merlin.torus), 96GB/s, 300ps link latency
Processor 72 cores, 1.4GHz, 2 reqgs/cycle
Lightweight Caches Private 32KB L1 (8-way assoc, 2 cycles), 512KB L2 cache shared between
2 cores (16-way assoc, 6 cycles), MESI
Memory 8 HMC @ 160GB/s, 6 DDR @ 20GB/s, capacities vary by experiment
Network 8x8 mesh, 57GB/s, 50ps link latency

2.2.3 Validation

To validate our simulation models, we performed two studies. The first study validated that the Goblin
HMC simulator’s bandwidth characteristics matched that of real HMC hardware. The second validated that
for the STREAM benchmark we could attain similar bandwidth on a simulated Sandy Bridge architecture
and a real Sandy Bridge chip. Additionally, near the end of this study, early Knight’s Landing (Xeon Phi)
hardware became available. While we do not rigorously validate our lightweight architecture against it, in
part because the software environment for the Xeon Phi (Knights Landing) is still rapidly changing, we will
present some comparisons throughout the study.

To validate the Goblin HMC simulation model, we ran a number of access patterns through our Pico
EX800 HMC testbed. This testbed features a 2GB HMC connected to four Stratix V FPGAs (one per
link). The access patterns were chosen to exercise a variety of contention patterns. Each pattern generates
random accesses from a specific link to a specific portion of the HMC (e.g., quad, vault, or bank). Figure 2.4
illustrates the patterns. In the top row, links access the colored region in their local quad. In the bottom
row, all links access the same colored region. The normalized bandwidth measurements from these access
patterns are shown in Figure 2.5 in red. Measurements are normalized to the bandwidth of accessing random
addresses in the link’s local quad (“own quad”). The next bar shows the original GoblinHMC simulator.
While the simulated bandwidth matches the same trend as the measured bandwidth for access patterns
at the quad and bank level, the vault patterns (‘own vault’ and ‘same vault’) differ significantly from the
measured pattern. In response to this validation study, a change was made to the simulated vault controller’s
contention management which resulted in the tan bar in the figure. Although the absolute numbers still
vary in a few cases, the hardware and simulated trends now match.
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Figure 2.6: Sandy Bridge socket validation study

The second validation study we did was to verify that the simulated Sandy Bridge socket described in
the previous section matches the STREAM performance of real hardware. This validation implies that we
are correctly modeling system bandwidth. For this study we ran the STREAM benchmark at a variety of
scales (array sizes) on the simulated system and compared to real hardware. Figure 2.6 shows the expected
(measured hardware) performance in black and the performance of the original model running in SST 5.1,
in orange. Array scale in hundreds of thousands of elements is shown along the X axis, bandwidth is shown
on the Y-axis. While the simulation achieves reasonable bandwidth for a small 100K array, its performance
quickly drops off. Analysis revealed that there was significant queuing occurring at the output of the directory
controller NIC. This occurred because aside from the network bandwidth and core’s limits on the number of
requests issued per cycle, the NIC was (incorrectly) the only limiter of throughput in the system. Adding
limits on throughput to the directory and memory controllers and allowing the NIC’s throughput to match
the network bandwidth resulted in the gray line in Figure 2.6. While performance is reasonable at some array
scales, at certain scales (namely 300K, 600K, and 900K), STREAM performed very poorly compared to the
real hardware. Because the "bad” scales were all multiples of 300K we suspected that the array size was
interacting pathologically with some addressing in the memory system. By default, MemHierarchy stripes
contiguous 4KB chunks of memory across the memory controllers in the system. Reducing the granularity
from 4KB to 512B and finally 64B (i.e., a single cache line) as shown in the yellow and darker blue colors
respectively, eliminated the pathological cases. Still the performance of the simulated system is a somewhat
worse than the real system. This deficit stems from the hardware using streaming stores to reduce pressure
on the memory system, something that SST does not yet support. While we did not implement them for
this study, based on these results, we plan to incorporate streaming store support into future SST releases.

With these validation studies and their resulting simulation improvements, we are confident that our
simulated models will yield the same trends we would see if we had hardware available. To further build
confidence in our results, where possible throughout the next chapters we will also compare to measurements
on an early version of the Knight’s Landing (Xeon Phi). This hardware has both high-bandwidth memory
and DDR and resembles the ’lightweight’ architecture from the preceding section. However because the
hardware is still changing, we do not attempt a rigorous validation study.
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Chapter 3

Design Space Exploration

Before analyzing multi-level memory management in the following sections, we look at the design space
for the HMC memory. We begin by analyzing the potential performance improvements when moving from
traditional DDR DRAM to the higher bandwidth HMC.

3.1 Potential Performance with HMC

To set a baseline for what is possible with the higher bandwidth of the HMC, we consider architectures
with enough HMC capacity so that the applications can execute fully out of the HMC. The following two
figures show the potential performance possible if the entire memory system were to be HMC instead of
DDR or DDR and HMC together. The heavyweight architecture is shown in Figure 3.1 and the lightweight
in Figure 3.2. Performance (Y-axis) is normalized to the performance of the same architecture with all
memory as DDR. Applications are shown on the Y-axis. As described in Section 2.1.1, we show a single
bar for HPCG and PENNANT as their samples are nearly identical, but split out the samples for the other
applications. For MiniPIC, the samples within an iteration differ but the same sample across iterations does
not differ (i.e., begin-charge is similar to middle-charge but not begin-field). Therefore we show a separate
bar for each of the samples within an iteration, charge, field and move. For SNAP, the begin sample differed
from the middle and end samples and so we show two bars, one for begin (SNAP p0) and one for the middle
and end (SNAP pl/2). Finally, recall that because the bandwidth difference between DDR and HMC is 8X,

that is the maximum expected performance gain.

Looking at the heavyweight architecture, three of the four applications (SNAP, HPCG, and PENNANT)
benefit from the increased memory bandwidth. HPCG and PENNANT perform especially well with 4.8X
and 6.4X speedups respectively. SNAP benefits to a lesser extent with a 1.7X speedup. This indicates that
both HPCG and PENNANT are highly memory-bandwidth bound and SNAP is less so. For MiniPIC, the
charge and move samples show no performance improvement. The field samples has a 1.3X speedup. This

7
6
5
4
3
2
1
SN B B BN B |

MiniPIC  MiniPIC field  MiniPIC SNAP p0 SNAP p1/2 HPCG PENNANT
charge move

Speedup over all DDR

Figure 3.1: All-HMC performance for the heavyweight architecture
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Figure 3.2: All-HMC performance for the lightweight architecture

occurs because on the HMC model, MiniPIC varies for this sample. In some executions it achieves just a
1.0X to 1.05X improvement, while in others it achieves nearly a 1.7X improvement. We have not confirmed
the reason for this variance but believe it is tied to the order that particles are processed (i.e., inserted
onto the particle list). An algorithmic change to ensure a “good” ordering might ensure that this phase of
execution always performs well. However, the improvement may not benefit the application as a whole as
the move phase dominates execution time.

The lightweight architecture in Figure 3.2 shows a similar trend to the heavyweight. MiniPIC has no
improvement - while the charge sample does get a speedup, charge accounts for a tiny fraction of the
application runtime. In contrast to the heavyweight where SNAP improved moderately, replacing DDR
with HMC in the lightweight architecture does not affect SNAP’s performance. However, both HPCG and
PENNANT show large performance gains, as they did for the heavyweight architecture. Overall, these
results indicate that gains in one architecture translate to gains in the other, although the magnitudes of
the performance gains vary because the architectures are so different.

3.2 Validating the Lightweight Model

As mentioned previously, we do not fully validate the lightweight model due to our changing Knight’s
Landing hardware, but we do compare to the trends on that architecture. We note that these trends
represent our current early version of the hardware and therefore may still change. In Figure 3.3, we show
the simulated performance on the Y-axis for each application running on the lightweight architecture with
all-HMC normalized to all-DDR. The second data series shows the performance for the same applications
running on Knight’s Landing hardware. These bars show the performance of running entirely out of the HBM
compared to running only out of the DDR. We observe that the overall trends match between the simulated
and hardware cases. Essentially, for applications that the simulation has predicted an improvement, the
hardware shows an improvement. The magnitudes of the gains vary. This is due to some differences between
the hardware and the model, including a slightly different thread count - 72 simulated threads compared
to 64 on the hardware, simulated samples compared to running the full application, and the fact that the
hardware is yet evolving.

3.3 Latency and Bandwidth Sensitivity

To look at the sensitivity of these workloads to latency and bandwidth, we compared three variations of
the HMC to the baseline HMC. For latency, we experimented with increased latency as this is the expected
trend for memory. As additional capability such as processing-in-memory and deeper stacks are added, we
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expect the HMC latency to increase slightly. To model this, we compared the baseline HMC to one with a
10ns increase in latency ( 15%). To look at the effect of a significantly higher latency memory, as might be
the case with future, non-DRAM based memory technologies, we further compared to an HMC that had a
50ns increase in latency ( 75%). For bandwidth, because bandwidth is expected to double in the future, we
looked at the performance change when moving from a 160GB/s (baseline) HMC to a 320GB/s HMC. To
support the increased bandwidth, in this configuration we also increased network bandwidth and the memory
controller throughput. Because the heavy and lightweight architectures have similar trends, we show results
only for the heavyweight architecture.

The performance for these three variants normalized to the performance of the baseline HMC is shown
in Figure 3.4 on the Y-axis (higher is better). Applications are shown along the X-axis. The two latency
variants are shown by the Lat + 10ns and Lat + 50ns bars. The bandwidth increase is shown by 2X B/W.
For the applications that demonstrated a smaller potential improvement with HMC, namely the MiniPIC
charge and move samples, as well as SNAP, there is little reaction to changes in latency or bandwidth.
However, both HPCG and SNAP show a significant reduction in performance with increasing latency. To
a smaller extent, MiniPIC field also shows a performance reduction. In contrast, these applications all
improve with the doubled bandwidth. Because the bandwidth increased by just 2X, the improvement is not
as great as that of going from DDR to HMC where bandwidth increased by 8X. Still, it is clear that for
some applications, increasing bandwidth will continue to improve performance. Overall, we conclude that
these applications can benefit from higher bandwidth, but not at the cost of higher latency.
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Chapter 4

Manual Management

4.1 Software Approaches & Trade-offs

In this section we evaluate methods for managing multi-level memory (MLM) in software. As mentioned
in Chapter 1, software management is attractive because it has the potential to be very efficient (albeit
with significant manual effort) and because it does not rely on hardware vendors for its implementation.
We describe three major strategies for such management. In algorithmic, an application writer employs
different data structures and algorithms to align the application’s memory behavior to the target memory
technology. For example, the writer might restructure the code so that a section of code can operate
completely out of high-bandwidth memory and make use of the increased memory bandwidth. Because of
the demand on programmers, as well as the need for algorithm-specific optimizations, we don’t explore this
concept deeply here. Still, in the following analysis, we will make note of areas where code changes might
complement the other management techniques. A second strategy is to utilize OS or runtime managed
MLM. In this technique, the OS determines where to allocate memory and may even migrate that memory
between memory levels if needed. A simple OS approach might be application-unaware while more complex
managers might monitor the application and memory performance to inform the management. Finally,
the third management strategy, manual, requires that the application manage its own memory. Manual
management generally requires code changes to specify where data should be allocated, as well as to migrate
data between memory levels if necessary. Note that OS/runtime management and application management
are not mutually exclusive. One can imagine systems where some memory is handled by each, as well as
systems where the OS manages the MLM in consultation with the application.

We focus on these last two, OS and application management. In addition to these primary methods, we
evaluate whether these decisions can be made statically for a run versus dynamically throughout the execution
of the application. In static allocation, the OS or application writer would make its allocation decisions once
and they would remain for the entirety of the execution. The advantage of static is its simplicity - no re-
evaluating mapping decisions and no re-mapping and its accompanying latency and bandwidth overheads.
However static allocation has the downside of likely not being sufficient for applications which have distinct
phases where different memory regions are touched. The second variable is whether allocation is done at a
page or malloc granularity. This variable does not apply to application-managed MLM as applications do
not use the concept of pages and therefore can only operate at the malloc level. For the OS however, there
are trade-offs. In general, large pages and mallocs have a higher probability of containing both bandwidth-
bound and bandwidth-insensitive regions. Putting either in an HMC wastes space that could otherwise be
given to only bandwidth-bound pages or allocations. Further, with very large allocations, one may not be
able to pack mallocs into the HMC and use the entire available memory.

In the following subsection we look deeper at the programmer effort, the expected performance, and the
potential overhead involved in both OS/runtime-managed MLM and manual/programmer managed MLM.
In Section 4.2 we present MemdSieve, an analysis tool we developed to analyze an application’s memory use.
Finally, in Section 4.3 we compare the performance of the manual approaches, including static and dynamic
allocation and malloc versus page-based allocation granularity.
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4.1.1 Trade-offs

Application- and OS-managed MLM trade-off programmer effort for potential performance. We summarize
the key advantages and disadvantages of each management method (OS and application) in Table 4.1. OS-
management has the advantage of requiring little to no effort from the programmer. For legacy applications

this is attractive.

On the other hand, the OS has no knowledge of the program behavior and so must

either blindly guess where to allocate memory or must use potentially high-overhead runtime profiling to

intelligently steer its decisions.

Such profiling is complicated by the OS’s lack of visibility into memory

usage. Unless there is a TLB-miss the OS is not involved in memory accesses. Further, even if the OS were
monitoring accesses, the OS does not differentiate between accesses that hit in a cache versus those that go
all the way out to memory. This distinction is important as many frequently-accessed regions of memory
end up being cache resident and so do not use main memory bandwidth.

Table 4.1: Trade-offs in management approaches

| OS/Runtime

Application

+ Able to capture allocations not under application
control

+ Knowledge of program behavior for better allocation

+ No intervention from programmer required

+ Application analysis to determine memory behavior
can be done offline

- No program knowledge for smart allocation

- No standard way to manage allocation within local
arrays or library calls

- Intelligent allocation requires programmer assistance
or runtime profiling

- Pervasive code changes

- Increased page-table complexity

- Offline analysis may be difficult if memory use varies
widely with input

- Potentially expensive re-mapping to support dy-
namic

- Potentially need to repeat offline analysis every time
there’s a new architecture

In contrast to OS-management, application-managed MLM also incurs overhead but most is offline. The
application writer must spend time profiling the application to determine how it uses memory, as memory
use is not always obvious (e.g., many frequently used allocations end up in cache). The writer must then edit
the application to explicitly manage memory, including moving and copying allocations if dynamic migration

is needed.

If the application requires dynamic migration, further support must be added to the application to
move allocations between memories throughout execution. Both OS and application-managed MLM incur
overhead to determine how an application uses memory. However, while the OS would incur runtime overhead
to determine application behavior, the application incurs overhead offline to analyze its memory usage.
Because the application-managed analysis is offline, applications whose memory use is very sensitive to the
input may not perform as well with offline analysis as compared to online.

OS management of memory is easier for the programmer and able to capture allocations that are part of
startup or libraries (for which the programmer may have no control). An example of this approach is the use
of the numactl utility on multi-socket or multi-memory-pool platforms such as Xeon, POWER or Knights
Landing. These approaches can help to limit the impact to application source code and still provide the
ability to target higher bandwidth hardware where available. The downside of such approaches is operating
system complexity, possible conflicts between the application and libraries, and the lack of knowledge the
operating system has of how data allocations are used resulting in the potential for lost performance.

Having discussed the trade-offs with different approaches, we now present the approaches studied in this

chapter.
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4.1.2 Options Explored

We examine four policies for MLM management which range in expected performance from low to high. On
the low side, we look at statically and greedily allocating pages (“Policy 1”7) and mallocs (“Policy 27) to
HMC, falling back to DDR when the HMC is full. Such policies fall under OS management and would be
the very minimum that the OS could do. On the high side of expected performance we look at application-
managed manual allocation, both statically (“Policy 3”) and dynamically (“Policy 4”). Comparing static
and dynamic allocation will tell us when an application might benefit from dynamic or whether static is
sufficient. Further, the performance gap between the static/greedy approach and the manual approaches
will indicate how much work would be needed on the part of an OS or runtime to reach the performance of
manual allocation. Such work might involve prediction, programmer “hints”, and/or runtime profiling. A
small gap indicates very little work is needed — simple prediction may suffice, whereas a large gap indicates
that both the OS and application programmer may need to be involved in the allocation (i.e., a hybrid
approach).

Before evaluating each policy, we analyze the memory behavior of our applications. By studying this
behavior we are able not only to inform manual allocation but to predict whether an application will be
amenable to a particular policy. The following section presents this analysis.

4.2 MemSieve: A tool for profiling application memory behavior

Analyzing the memory behavior of applications and how that behavior changes with application input
and architecture enables us to predict how applications will respond to different memory architectures and
management strategies. Specifically, for a multi-level memory system containing high-bandwidth HMC and
conventional DDR, we are interested in regions of memory which disproportionately use memory bandwidth.
These regions are likely to benefit from being placed in HMC. To measure memory bandwidth use we
define the metric, access density, to be the number of accesses to a region divided by the size of the region.
We hypothesize that the denser a region, the more likely it is to benefit from allocation in HMC. The
particular regions we consider here are each allocation (malloc) made by an application as they are the finest
granularity that can be easily captured by application profiling and mapped back to application memory
objects. However, one could easily extend the concept of access density to larger or smaller regions.

To capture access density we developed an SST-based tool, MemSieve, that correlates main memory
accesses (i.e., last-level cache misses) to application allocations (mallocs). It does so without simulating
the full cache and memory hierarchy, making it faster and more scalable than using detailed simulation to
collect the same information. As our eventual goal is to apply MemSieve to full applications, we consider
this capability critical. In our experiments, MemSieve achieves at least a 2.5X speedup over full simulation,
yet yields similar main memory access statistics (miss rates, read and write counts). Because MemSieve is a
simulation tool, we are able to vary the architecture it models (e.g., heavy vs lightweight) to determine how
architecture affects memory use. In contrast, vendor tools tend to be tied to a particular architecture and
so cannot be used for forward-looking analysis.

4.2.1 The MemSieve Tool

MemSieve consists of two parts, a PIN tool and processor model (we use Ariel) which records memory
allocations and issues memory requests, and MemSieve itself, which models essentially, an un-timed last-
level cache. A block diagram is shown in Figure 4.1. Although we show a single MemSieve in this diagram, we
can use multiple MemSieves in a system to model multiple semi-shared last-level caches, as in the lightweight
architecture.

Because we are modeling very little detail about the memory system other than its last-level cache
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structure, MemSieve has some limitations. First, it does not model coherence and so MemSieve may be less
accurate for applications that rely heavily on coherence, that is, have significant read-write sharing. Second,
MemSieve implicitly assumes an inclusive last-level cache. For architectures where upper level caches (L1s
for example) are exclusive or noninclusive of the last-level, MemSieve may underestimate the effective cache
size. However, such architectures could be approximated by increasing the size of the MemSieve(s).

Validation

To validate that a MemSieve simulation yields similar memory patterns to detailed simulation, we compared
the memory statistics from each simulation. This validation was done with the heavyweight architecture and
compared to a MemSieve system with a single MemSieve of the same size as the aggregate of the heavyweight
architecture’s last level caches. Table 4.2 shows the read (left two columns) and write (right two columns)
cache miss rates, measured as fraction of accesses that missed the entire cache hierarchy, for each application.
The “Detailed” columns show rates for the detailed simulation while the “MemSieve” columns show the rates
for the MemSieve simulation. For both reads and writes, the rates match closely, indicating that despite the
reduced detail, MemSieve is able to accurately capture memory behavior.

Table 4.2: Validating MemSieve

Applications Read Miss Rate Write Miss Rate
Detailed | MemSieve | Detailed | MemSieve
PENNANT | 1.15% 1.23% 4.81% 4.81%
HPCG 6.71% 6.71% 2.30% 2.31%
SNAP 0.42% 0.42% 0.71% 0.71%
MiniPIC 0.04% 0.04% 0.00% 0.00%

4.2.2 Analysis

Having validated that MemSieve accurately captures memory behavior, we now analyze each application
using MemSieve. The first analysis looks at the overall characteristics of mallocs for each application. The
second takes a look at how we can use MemSieve to determine how “ideal” an applications memory use
pattern is, and the third looks at how the cache hierarchy of the light and heavyweight architectures affects
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that pattern. Finally, we do a small proof-of-concept, demonstrating that MemSieve can be used to realize
substantial performance gains on real hardware.

Malloc Characteristics

We begin by looking at some basic allocation characteristics for each application. These are shown for an
8GB data footprint in Table 4.3. The statistics cover execution from application begin through the end of
the ’End’ sample (see Table 2.2). SNAP is an exception because the MemSieve PIN tool encounters memory
for the 8GB data set after the ‘Middle’ sample. Therefore, SNAP shows statistics from application begin
through the end of 'Middle’. The first row, “Malloc count” shows the raw number of mallocs encountered
during execution and the second row, “Malloc size” shows the total size of these mallocs. HPCG and MiniPIC
have relatively fewer mallocs and the size of the mallocs matches the memory footprint indicating most data
objects are allocated once and used throughout the application. In contrast, SNAP and PENNANT have
both larger malloc counts and a much larger size than the memory footprint, implying frequent allocation
and frees. This can cause problems, not only for manual MLM management where fewer allocations are
easier to manage, but also in general. Frequent mallocs can reduce locality in the data set leading to worse
cache and TLB performance, as well as increase overhead due to the individual malloc calls. We note that
HPCG, prior to release 3.0 which switched to allocating arrays in full rather than element-wise, exhibited
the same behavior and suffered lower performance (both in simulation and on hardware).

Table 4.3: Malloc characteristics

[ [ PENNANT | HPCG | SNAP | MiniPIC |

Malloc count 8B 23M 1B 438K
Malloc size 32.1 TB 7.43 GB | 30GB | 7.9GB
Distinct traces 248 612 323 39043
Accessed traces 140 146 90 10794
Size of accessed traces as % total | 89.7% 99.987% | 89.6% | 84%
App traces 220 583 188 38999
Accessed app traces 129 132 58 10781

The next two rows, “Distinct trace” and “Accessed traces” show the number of distinct call traces among
the mallocs and the number of distinct call traces that are accessed in main memory (as opposed to cache or
not at all). We look at the entire call path rather than just the malloc call site to enable us to differentiate
mallocs that are part of separate data structures that share the same code. For example, in HPCG, we
can differentiate mallocs for each level of the multigrid, although the code building each level is shared.
Looking at distinct traces, we see that PENNANT, HPCG, and SNAP have low counts. For manual MLM
management, this means there are relatively few paths that a programmer would need to consider, simplifying
the code changes. For MiniPIC, there are many distinct call paths, complicating the programmer’s job. For
such an application, manual allocation would almost certainly require assistance from an automated tool,
like MemSieve, to identify mallocs of interest. Even so, the programmer may need to mark many distinct
traces for allocation in HMC, requiring more pervasive code changes than for the other applications.

Turning to the ” Accessed trace” row, the most common reason a trace does not have memory accesses
(cache misses) is that the malloc called by that trace is small and frequent allocations and frees to the
memory returns the same memory address. The address ends up cache resident and does not incur cache
misses. The next most common cause is that the mallocs occur in startup, before we begin profiling accesses
in the simulation. Least often, the mallocs occur during non-sampled iterations of the main computation.
The next row in the table, “Size of accessed traces”, shows that while in many cases less than half of the
distinct traces are accessed, the size of the mallocs associated with the accessed traces accounts for 84%
to almost 100% of the total allocated size shown in row 2. Thus, the sampling methodology described in
Section 2.1.1 is sufficient for profiling a high majority of mallocs.
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Finally, the last two rows in the table show the count of distinct traces (“App traces”) and the number of
those with accesses (“Accessed app traces”) if we remove library calls from the call traces. Removing library
calls has two effects. First, it removes mallocs reached entirely through library calls, such as occur before
program start. These mallocs are not accessible to programmers anyways. Second, removing library calls
enables us to merge traces that have the same call trace through the application but differ once they enter
libraries. Because an application’s separate paths through libraries are generally opaque to programmers,
this gives the “real” number of call traces a programmer will need to contend with.

Ideal Malloc Behavior

In this section we take a deeper look at the malloc behavior of each application and compare it to an “ideal”
application whose memory would be easy to manage manually. Because we expect that application writers
will be managing mallocs according to their unique call traces, we consider the densities and sizes of mallocs
at that granularity. We begin by describing this ideal application. The first measurement we look at is
density. Recall that density is the number of memory accesses to a region divided by its size. An ideal
application has very few, very dense regions that account for most of the application’s memory accesses.
In this case, the programmer would have few malloc call traces to manage, the candidate call traces would
be easily distinguishable from the rest due to their high density, and placing mallocs generated by those
call traces into HMC would mean that most of the application’s accesses benefit from the higher bandwidth
memory. The density and access graph for such an application is shown in Figure 4.2a. Density is plotted
in the blue bars on the left Y-axis for each unique malloc call trace sorted from most to least dense along
the Y-axis. The cumulative fraction of accesses accounted for by each call trace is shown by the orange line
and plotted on the right Y-axis.

The second measurement we consider is size of the mallocs associated with each call trace, as shown in
Figure 4.2b. The blue curve shows the cumulative size (left Y-axis) for each call trace sorted from most to
least dense along the X-axis. Cumulative accesses are again shown by the orange curve and plotted on the
right Y-axis. Because the size curve grows slowly while the access curve grows quickly, this application will
need less HMC capacity to capture the majority of memory accesses. However “less capacity” is a function
of the total allocated size and so one must consider both the scale of the left Y-axis as well as the growth of
the size curve.

Having described an ideal application, we turn to the focus mini-applications. PENNANT"s density and
size graphs are shown in Figures 4.3a and 4.3b respectively. Looking at the density graph, we can see the
PENNANT differs greatly from the ideal application described above. Nearly half of the mallocs are equally
dense and accesses are spread evenly across those mallocs, meaning the programmer is going to need to
manage many allocations to take advantage of the HMC’s higher bandwidth. Because so many mallocs are
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dense, it is likely that dynamic migration between the HMC and DRAM will be be necessary. However,
without looking at the behavior over time we cannot tell with certainty how the allocations are accessed in
different application phases. MemSieve does have the ability to profile over time, but for this initial study
we did not pursue it. The second, size graph, is better at first glance as the many dense mallocs account for
a small fraction of the overall size. Still, because the total size of mallocs is 30TB, a small fraction may not
be small enough to fit in HMC.

In contrast to PENNANT, HPCG demonstrates nearly ideal behavior. Its density graph, shown in
Figure 4.4a has a steep cliff, far to the left indicating that the programmer will need to manage very few
allocations to capture both the majority of dense mallocs and the majority of accesses (shown by the red
line). The size graph (Figure 4.4b) is less ideal. Although the most dense mallocs account for just 1/8th
of the total memory, the programmer may not be able to fit all of the moderately dense mallocs in HMC.
This means slightly lower performance especially at smaller HMC capacities, but compared to PENNANT,
HPCG will require less work (and potentially no dynamic migration) to achieve the performance.

Figure 4.5a and Figure 4.5b show the density and size graphs, respectively, for SNAP. The density appears
ideal however, the access curve resembles that of PENNANT — the densest mallocs account for a moderate
fraction of overall accesses. Looking to the size graph we see that these densest mallocs are also quite small,
about 1GB in total. As such it is likely that all of the dense mallocs will fit in even a small HMC. However,
as the dense mallocs capture only about 50% of the accesses, steering the rest of the accesses to the HMC
will require considering sparser mallocs. Further, the size graph indicates that while most mallocs are small
(i.e., flat curve), there are a few large, sparse mallocs and these correspond to large jumps in the access
curve. Placing large, sparse mallocs in a limited size HMC will be difficult and therefore for SNAP, one
may need to consider a smaller granularity than mallocs to capture more accesses. Overall SNAP presents a
mixed picture. One should be able to easily fit the densest mallocs into HMC, but doing so will only capture
half of the accesses. Capturing the remaining accesses will require more work.

Finally, we analyze MiniPIC’s allocation behavior. Figure 4.6a shows MiniPIC’s density graph. Of
the applications analyzed, MiniPIC is the least ideal. The majority of dense mallocs account for very few
accesses and so placing the dense mallocs in HMC is likely to have no effect on performance. The size graph
(Figure 4.6b is similarly non-ideal. The size and access curves are both far to the right, indicating that not
only must one consider the sparse mallocs to capture the majority of memory accesses, the sparse mallocs
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are large and therefore likely difficult to place in HMC. While MiniPIC showed no performance improvement
in Section 3.1 and therefore we do not consider it further, these graphs indicate that even if it did benefit
from HMC, it would not be easy to capture the performance with a small HMC-to-DRAM ratio.

Architecture Effect on Dense Mallocs

Our last analysis looks at the effect of the cache architecture and application input on which mallocs are
considered dense. For manual allocation this is important, as the programmer would need to redo the
allocation management if it varied with either architecture or input. Input is arguably a bigger problem,
as applications are likely to be run on few architectures, but the inputs may vary widely. Still, variance
due to either architecture or input increases the work of the programmer and makes manual allocation less
appealing.

Figures 4.7 and 4.8 show the variance in the top malloc trace ranking for PENNANT and HPCG between
two data set sizes. Similarity on the Y-axis is measured as the fraction of the top N malloc traces (for N
shown along the X-axis) that are the same for both the smaller and larger data footprint. For example, a
50% similarity at N=2 would mean that one of the top two traces match in the rankings for the smaller
and larger data footprint. While both graphs show some differences in the top 20-30, overall the sets of
dense traces are similar. For perspective, in the next section where we manually place mallocs, we generally
consider the top 40-50 traces. Thus, while for very small HMCs the variation may have effect, for larger
HMCs like those studied here, the differences in ranking do not greatly affect malloc placement. This is
advantageous as it means a programmer can profile and the application once and apply the results to a wide
range of inputs. For HPCG at N larger than 60, the similarity does start to drop off. This occurs because
the malloc traces ranked 60 tend to have few accesses (e.g., less than ten) and small simulation variations
can be the difference between the trace being cached or not.

We now look at the variance due to architecture. For this experiment we ran HPCG and PENNANT
using MemSieve representations of both the lightweight and heavyweight cache hierarchy. Figure 4.9 shows
the resulting variance for PENNANT and Figure 4.10 shows HPCG’s variance. As in the previous set of
graphs, the X-axis shows the number of malloc traces compared and the Y-axis shows the percent of malloc
traces in each of the lightweight and heavyweight ranking that match. For PENNANT and HPCG there
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Figure 4.8: HPCG: similarity in malloc trace ranking between a 4GB and 8GB data footprint

is some difference in the top 10 to 20 traces, but as the number of traces considered grows, the ranking is
similar. In both, similarity reaches 80% or greater by N=20. This is well within the 40-50 traces considered
for manual allocation and therefore the initial differences are unlikely to affect overall placement.

Dense Mallocs: What are they?

The previous sections gave an overview of the density distributions and characteristics of each application’s
mallocs. In this section, we look deeper at those mallocs and identify precisely what they are in reference
to the application code. For PENNANT, the dense mallocs tend to be the arrays found in the Hydro class,
although a few of the Mesh arrays are dense as well. For HPCG, the densest mallocs are the CG vectors,
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Figure 4.9: PENNANT: similarity in malloc ranking between the heavy and lightweight architectures
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Figure 4.10: HPCG: similarity in malloc ranking between the heavy and lightweight architectures

followed by some of the structures associated with levels of the multigrid. In general, finer levels of the grid
have denser mallocs than coarser ones. But, this is not a strict rule. For example the textitAxf vector is one
densest mallocs regardless of grid level.

In SNAP, many of the densest allocations are working arrays allocated in the Solvar module. Other dense
allocations include the leakage arrays and flux moment arrays. Finally, in MiniPIC the Particle TypeList is
the densest allocation, followed by some of the face and edge maps. These include the boundary_face_map,
owned_boundary_edge_map, and owned_face_map.

Translating MemSieve to Hardware

We envision that the MemSieve tool will be useful for programmers trying to determine which allocations
are the best candidates for HMC (or HBM) allocation. In this section we take a look at that workflow and
validate that MemSieve’s suggestions do result in performance improvements on real hardware. For this
study we looked at MiniFE rather than one of the four focus mini-apps. The major reason for this is that
MiniFE is simpler than the focus mini-apps so that manually editing it for allocation on real hardware is
easier. Running MiniFE through MemSieve revealed that four of the top five ranked mallocs were Vectors.
The sixth-ranked malloc was the array, which is likely too big to place in the Knight’s Landing’s HBM.
The remaining top ten mallocs were comprised of calls related to OpenMP for loops which are difficult
to manually allocate since the allocation is done by the OpenMP library. To test MemSieve’s suggestions
therefore, we manually edited MinIFE to place the Vectors in HBM. Figure 4.11 shows the results. On the
left is the performance of MiniFE on the Knight’s Landing when running completely out of the DRAM.
Performance is normalized to this configuration. In the middle is the performance of MiniFE when running
completely out of the HBM. While this is the ideal case, the HBM is too small for realistic problem sizes
to fall in this category. Therefore, a hybrid approach is needed, as shown on the right. This bar shows
the performance of MiniFE when the Vectors, per MemSieve’s recommendation, are manually allocated to
HBM. In this case, we see a significant, 1.5X speedup over DRAM only.

Processing-In-Memory and MemSieve

We finish our discussion of MemSieve by touching briefly on the subject of processing-in-memory (PIM).
Because HMCs have a logic layer under the DRAM stack, they are ideal candidate technologies for imple-
menting PIM. However, the question is not the capability of HMCs to support PIM, but rather what kind
of PIM applications might benefit from. One way to approach this question is to look at which application
allocations are likely to be HMC-resident. Allocations that are largely cache-resident or move between caches
and memory would increase PIM overhead by requiring extra flushes and coherence actions to ensure coher-
ent PIM. On the other hand, allocations that are likely to be resident in DRAM are not candidates for PIM
as operating on them would require migrating the data to HMC. Fortunately, MemSieve can answer this
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question with its dense allocation ranking. Importantly, we note that MemSieve’s ranking is not limited in
usefulness to manual allocation. An intelligent OS/runtime approach and the hardware caching policies that
we’ll discuss in the next chapter are all methods for identifying dense allocations (or pages). While they may
not be as predictable or efficient as manual allocation, well-designed automatic management schemes should
on average end up with the same allocation as the manual approach. Thus regardless of the management
scheme used for MLM, we can use MemSieve to answer the question of what is likely to end up in HMC and
therefore where the application might benefit from PIM without incurring extra overhead.

As an example, one common allocation type that shows up across all the applications is OpenMP loop
pragmas. Unsurprisingly, these figure especially heavily in the lightweight architecture’s malloc ranking as
that architecture has many more threads. Because these mallocs tend to be small they are likely to fit in
HMC even though many are only moderately dense. As such, one suggestion for PIM would be to add PIM
computation capability for some of the small OpenMP loops with no child calls.

4.3 Comparing Software Allocation Strategies

In the previous section we discussed the role of MemSieve in steering manual allocation as well as for
analyzing the likelihood that an application will benefit from a given management policy. In this section,
we compare the four policies outlined at the beginning of the chapter and discuss why they perform as
they do. To recap, those four policies are (1) greedily allocating pages in HMC based on first touch, (2)
greedily allocating mallocs in HMC as they are encountered, (3) using MemSieve to analyze the application
and statically allocate the most dense allocations to HMC, and (4) using MemSieve to analyze application
phases and dynamically migrate allocations so that the most dense allocations for each phase are in HMC.
Because MiniPIC did not show any potential for improvement (Section 3.1), we do not analyze it here and
instead focus on PENNANT, HPCG, and SNAP. Further, as the heavy and lightweight architecture perform
similarly, we look primarily at the heavyweight architecture. However, we will compare the two architectures
in Section 4.3.3.
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4.3.1 Comparing Software Approaches

Figure 4.12 shows the performance of the software allocation strategies on the X-axis for PENNANT. Greedy-
page and Greedy-malloc are the static greedy page-based and malloc-based approaches respectively. Static is
the static manual approach and Dynamic is the dynamic manual approach. We normalize performance to the
performance of DRAM-only (Y-axis) and show results for three HMC capacities ranging from 1/8th to 1/2 of
PENNANT’s data footprint. In addition, for reference we include the case where all memory is HMC (yellow
bar). Since allocation strategy is irrelevant in the all-HMC case we show it only for Greedy-page. Looking at
the graph, we first conclude that PENNANT performs much better with a larger fraction of HMC. This fits
with the MemSieve analysis which showed that PENNANT’s dense mallocs had a large memory footprint.
Second, we observe that the first three strategies, Greedy-page, Greedy-malloc, and Static, perform similarly,
while Dynamic roughly doubles the performance improvement. Again, the MemSieve analysis showing many
equally-dense allocations predicted this outcome. Unfortunately, this means that for best performance,
PENNANT will require more HMC and dynamic migration, the most complex management policy.

Next we turn to HPCG, shown in Figure 4.13. Again, the X-axis shows the allocation strategies and the
Y-axis shows performance normalized to DRAM-only. For reference, because MiniFE and HPCG do similar
computation, the star to the right of the Static bars shows the performance on Knight’s Landing hardware of
MiniFE with Vectors statically allocated in HBM (Section 4.2.2). As with PENNANT, there is a large jump
in performance, especially from 25% to 50% HMC. Looking back at the MemSieve analysis in Section 4.2.2,
one sees that while the densest allocations comprise a small fraction of the data footprint, there is a steep
rise in the percentage of accesses accounted for that coincides with a rise in the malloc size curve from about
12.5% of the footprint to nearly 50% of the footprint. With the exception of Greedy-malloc, the policies
perform similarly. We believe that Greedy-page happens to get a good mapping because the most dense
allocations tend to be accessed early in an iteration (i.e., the CG vectors and lower levels of the multigrid).

Lastly, Figure 4.14 shows the results for SNAP. This graph differs from the previous two applications
in that the fraction of HMC matters little to performance, and Greedy-page rather than one of the malloc-
granularity policies performs best. This occurs because SNAP has two very large mallocs that each account
for 42% of the data set size. The mallocs are only moderately dense, but once the HMC capacity is small
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Figure 4.13: Software allocation policy performance for HPCG

enough that neither fits, the malloc policies capture the same mallocs. The page-based policy on the other
hand is able to capture part of these mallocs, resulting in better HMC utilization and higher performance.
This points to a need for a code change if the malloc-policies are to perform well. Large mallocs lead to
inefficient use of the HMC. It is also possible that large mallocs hide smaller dense and less dense regions
within them.

Overall, the greedy policies perform well, but this statement comes with an important caveat. The
studied mini-apps, while more complex than many, are not real applications. Full applications with many
execution phases and allocations that occur throughout execution are unlikely to perform well with greedy
because only the early allocations and phases will benefit from the HMC. PENNANT hints at this case, where
allocations occur and the set of dense data structures changes throughout execution. As such, support for
dynamic migration is essential, whether application- or OS-managed.

4.3.2 Effectiveness of Manual Allocation

We now look slightly deeper at the effect of manual allocation on the spread of accesses to the different
memory levels. Table 4.4 shows the fraction of memory accesses that went to HMC instead of DRAM for
each of the benchmarks, policies, and HMC capacities in the preceding section

Table 4.4: Fraction of accesses to HMC compared to DDR

Policy Greedy-page Greedy-malloc Static Dynamic

Capacity 12.5% | 256% | 50% | 12.5% | 256% | 50% | 12.5% | 25% | 50% [ 12.5% | 25% [ 50%
SNAP 34% 47% | 68% | 38% 52% | 52% | 36% 52% | 49% | 40% 44% | 44%
HPCG 26% 49% | 92% | 5% 29% | 75% | 23% 47% | 93% | 23% 49% | 93%
PENNANT | 20% 34% | 62% | 15% 30% | 55% | 20% 33% | 67% | 38% 47% | 87%
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4.3.3 Effect of the Architecture

The previous sections showed results for the heavyweight architecture only, we now look at the lightweight
as well. Because the potential improvements from HMC were similar for both architectures (Section 3.1), we
look only at PENNANT. Figure 4.15 shows PENNANT’s performance (Y-axis) for the different capacities
(bars) and policies (X-axis). Comparing these to Figure 4.12 above, we see the same trend. The first three
policies perform similarly, while dynamic outperforms the others by nearly a factor of 2X. Again, there is a
large jump in performance between the 25% and 50% capacities.

4.3.4 Conclusions

Together, the MemSieve analysis with the analysis of software managed MLM strategies define a path for-
ward for software managed MLM. Because the simple, OS-managed greedy strategies performed fairly well,
we argue that the best path forward for MLM management is likely to be an OS-managed approach that
uses programmer hints for intelligent allocation. We think that for more complex applications with many
execution phases, the OS will not “get lucky” with a static greedy allocation and so a hybrid approach will
be necessary. This approach should include support for dynamic migration. While the wholly manual ap-
proaches performed well, they come with numerous drawbacks including lack of support for legacy codes, lack
of programmer control over library allocations, and no centralized management to handle the complexities
of sharing HMC capacity between library and application code.

A second conclusion we draw is that the best performance will likely require algorithmic changes. In
this study we see that SNAP cannot easily take advantage of the HMC at a malloc granularity because its
mallocs are too large. Breaking up the malloc would likely improve performance. Designing the application’s
execution phases so that a single phase can operate mostly out of HMC would also be beneficial. For
PENNANT, the large phases still spill out of HMC and for HPCG, the phase granularity was too great.

Finally, we observed similar application memory behavior across the very different heavy and lightweight
architectures. This result is not unexpected given that the underlying memory technologies are the same,
the allocation malloc behavior doesn’t vary greatly with architecture, and the potential HMC performance
was also similar. However, it indicates that these results are likely applicable to a variety of architectures
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beyond those studied.
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Chapter 5

Automatic Management

Manual management is advantageous because it requires no modification to the hardware, however it does
require programmer effort and / or knowledge. Thus, it is worth exploring MLM which is managed without
any programmer effort. In automatic management, the hardware, operating system, runtime, or some
combination thereof move data between the levels of memory without user guidance.

In this chapter, we explore several automatic MLM management policies.

5.1 Background

5.1.1 Related Work

There is a wealth of related work on automatic paging algorithms and cache policies. For caches, most works
emphasize different replacement policies, such as Least Recently Used (LRU), or pseudo-LRU for SRAM
caches[7]. A variety of virtual memory paging schemes have been explored such as simple FIFOs, LRU,
multiple queue systems[9], or adaptive models[3].

Multi-level Memory has explored the combination of DRAM and NVRAM][17] with demand paging,
sometimes using dynamic policies[12]. [16] explores hybrid policies to reduce energy. In particular, it
explores using historical page access information (HRank) to performs bulk swaps at regular intervals and
an inclusive demand paging policy (PCache). Other work[1] examines user-directed management of MLM.

5.1.2 Key Differences

This work differs primarily in that it focuses on the addition policy rather than the replacement policy. In
most systems (e.g. SRAM caches backed by DRAM or DRAM backed by hard disk) the relative latency of
the faster storage is so much lower than the backing store that the best addition policy is almost always a
simple “always add” policy. In an MLM system comprised of DDR + fast stacked memory that is not the
case.

The MLM management problem is a subset of the general caching / paging problem. This problem
consists of two parts: addition policies, that determine when a block of data is moved to the faster memory,
and replacement policies, that determine when a block of data in the faster memory should be moved to
the slower memory. The MLM problem is similar to the management of processor SRAM caches or virtual
memory (VM). However, due to the massive differences in latency between levels, both SRAM caches and
VM must bring data into the closer memory before it is used. In these systems, the addition policy could
be described as “Always Add.”

In MLM, the latency of the Fast memory may not be dramatically different from traditional DDR DRAM.
Thus, there are many cases where it may make sense to leave a data block in the slower memory if it is
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not going to be used frequently. This saves the overhead of transferring between levels of memory. Early
simulations of several benchmarks of a system with 128 pages of fast memory using a simple always add
policy found that performance was reduced by 9% to 61% (average: 52%) poor policies can turn MLM from
a benefit into a liability.

5.2 Early Analysis

To develop potential policies, we began by analyzing several applications’ (Section 2.1) memory access
patterns.

5.2.1 Access Patterns Within A Page

Using the infrastructure created for [8], we examined how post-cache memory accesses are distributed within
a page. The analysis filter records each access to a page and compares it with the last access to that page. It
then computes the offset (A = Addrye., — Addryq) and classifies the new access into one of five categories:
Same Address (A = 0), next cache line, A = 1, ‘jump forward” (A > 1), previous cache line (A = —1), or
“jump back” (A < —1).

Each page was placed in a five dimensional space based on the percentage of memory accesses that fall
into each category. A k-means clustering algorithm was applied to the classified pages for each application
to identify “typical” pages. Figure 5.1 shows the center points of four clusters for the access patterns for
three applications. For each center, the graph shows the five “directions” that the next memory access takes
(A =0,1,—-1,> 1,< —1) and the percent of memory accesses that fall into that cluster.

For example, in Lulesh 64.1% of accesses go to pages which are dominated by an access pattern that is
overwhelmingly incrementing through memory, but there are a seizable number of accesses (26.9%) which go
to pages that tend towards increment, but have a third of their accesses either jumping ahead or behind by
some amount. In contrast, MiniFE is almost completely dominated by pages that are simply incrementing
through memory.

This indicates that many applications have a significant “streaming” component — large number of pages
which are accessed sequentially. Because so many pages have a strong A = 1 component, it should be
possible to detect “streaming” pages by noting a relatively short series of consecutive positive incremental
accesses.

5.2.2 Multithreaded Access

We also wished to examine how many threads of execution access a given page. The goal of this analysis
was to determine suitable page sizes. Ideally, a page size should be large enough that per-page meta-data is
limited, but small enough that patterns (e.g. scans) are preserved and swap time is limited. We theorize that
minimizing the number of threads that are accessing a page would be beneficial. If fewer threads are accessing
a page, post-cache hardware is more likely to identify simple patterns (e.g. linear scans). Additionally, a
page with fewer threads accessing it can probably be swapped from one level of memory to another without
disrupting as many threads.

Using SST, we performed an analysis for several mini-apps. For each page in memory we looked at how
many unique threads accessed that page, and how many times each thread accessed that page. For this
analysis we only examined post-cache accesses (i.e. main memory accesses).

Across CoMD (Figure 5.2(a)), Lulesh (Figure 5.2(b)), and MiniFE (Figure 5.2(c)) 4KB pages are accessed
by only a small number of threads — generally one or two threads. Even in the case of Lulesh, which has a
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5.3 Policies

To explore multiple MLM policies, we propose a simple, self-contained architectural block, the MLM Unit,
which dispatches main memory accesses to either traditional DDR DRAM or a “Fast” memory. Figure 5.3
shows the proposed block, which is comprised of three subunits:

e Policy Dispatcher: The control unit of the block, which decides if a given memory page should be
located in the DDR or fast memory, swaps pages as needed, and dispatches incoming memory accesses
appropriately. The addition and replacement policies are detailed below (Sections 5.3.1 and 5.3.2).

e Mapping Table: A TLB-like structure (in the sense that it contains metadata about each memory
page) which records which pages reside in fast memory, as well as policy-specific meta-data for each
page.

e DMA: A unit to transfer pages between the DDR and fast memory without involving the CPU or
coherent cache hierarchy.

The MLM Unit attaches to the memory hierarchy after the directory controller, so all coherency decisions
have already been made. Because there is only one valid copy in the backing store (either in the DRAM
memory or “Fast” memory), the MLM Unit does not require additional coherency tracking, nor does the
cache coherency protocol need to be modified to support MLM. Additionally, the mapping table data is only
used locally and does not require complex management like a TLB.

Though the DMA subunit and certain updates to page metadata require hardware support, the actual
policy decisions could be made purely in hardware or with more explicit software, operating system, or
runtime control.

5.3.1 Addition Policies

Addition policies determine if a candidate page which is being accessed should be added to the “fast” memory.
Seven addition policies were implemented. Many of these policies require a count of accesses be kept for
each page in memory. This count, touchCount, is reset every 5ms. The policies we examined are:
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e addT (Threshold) is a simple threshold policy. If the candidate page’s touchCount is greater than a
given threshold it will be added to the “fast” memory.

e addMFU (Most Frequently Used) If a candidate page’s touchCount is greater than the lowest touchCount
of all pages currently in fast memory, the candidate page will be added. The overhead of this policy
would probably be prohibitive in practice, but it is included for completeness. This policy is similar to
HRank [16], but is performed continuously and for individual pages instead of multi-page transfers at
timed intervals.

e addRAND (Random) Each time it is touched, the candidate page has a 1-in-8192 chance of being
added. This probability was chosen after a search of parameters to give good performance for the given
applications.

e addMRPU (More Recent Previous Use) If the candidate page’s last touch was more recent than the
least previously used page in fast memory it is added. This requires that each page in memory be
marked with the time of its last access.

e addMFPRU (More Frequent, More Recent Previous Use) As addMRPU, but only add the candidate
page if it also has a higher touchCount than the least recently used page in fast memory.

e addSC (Stream Conscious) A policy inspired by the access patterns detected in Section 5.2.1, addSC
is similar to addT, but also detects streaming pages. If the last six accesses to a page have been to
sequential cache line addresses (i.e. A = 1), then it only has a 1-in-1024 chance of being added. This
would require additional metadata (sequential access count, last cache line address) to be stored for
each page.

e addSCF (Stream Conscious-Frequency) Operates as addSC, but only add the candidate page if it also
has a higher touchCount than the least recently used page in fast memory.

In addition, all policies include “swap throttling” in which they will not start swapping a page to fast
memory if the DRAM transaction queue is full.

5.3.2 Replacement Policies

Replacement policies determine which page should be removed from “fast” memory to make room for a new
page. We looked at six policies:

e FIFO (First In / First Out) When a new page is added to fast memory it is added to the front of a
list. When a page needs to be removed from fast memory, the page is chosen from the back of the list.

e LRU (Least Recently Used) New pages are added to the front of a list, and pages are removed from
the back of the list. Whenever a page is accessed it is moved to the front of the list.

e LFU (Least Frequently Used) The accompanying replacement policy for addMFU. Replace the least
frequently used page.

e LFUS8 (Least Frequently Used, 8bit) Like LFU, but the touchCount is an 8-bit saturating counter.

e BiLRU (Bi-Modal Least Recently Used) Like LRU, but 1 out of 128 pages are placed at the back of
the replacement list.

e SCLRU: (Stream Conscious Least Recently Used) Like LRU, but streaming pages are put at the back
of the list when they are added and they are not moved to the front of the list when they are touched.

5.4 Early Results

To quickly test different policies, our first simulations swept each application using combinations of the seven
addition policies and six replacement policies. For Lulesh and MiniFE (Figure 5.4) the addMFPRU, ad-
dMFU, and addSCF addition policies perform best, with addRAND performing reasonably well for MiniFE.

49



The BiLRU, LRU, and SCLRU replacement policies have very similar performance. FIFO is slightly worse
— about 5-6% slower.

For the two molecular dynamics applications, CoMD and Lammps, the results (Figure 5.5) are similar.
The addMFPRU, addMFU, and addSCF addition policies perform best, with addRAND slightly (2-4%)
slower. For these applications the choice of replacement policy is even less critical, with less than 1%
performance difference between the different policies.

These results show several trends. “Frequency” based addition policies (addMFRPU, addMFU, and
addSCF) perform best, though a properly tuned random policy can be reasonably effective. Most striking,
as long as the addition policy is reasonable, the replacement policy has a rather limited effect on performance.
Even a simple FIFO policy is usually within a few percent of the best policy.

The relative unimportance of the replacement policy is also shown by the next set of experiments in
which the threshold for the addT policy was varied for each application (Figure 5.6). Applications tended
to perform better with higher thresholds. However, they did evidence diminishing returns and the best
threshold appears to differ for each application.

Lastly, we explored the effectiveness of “swap throttling” — not issuing swaps to or from fast memory
when the DRAM was busy. While throttling did not have a major impact on most policies, it did have
a significant impact on the simple addT (threshold) policy (Figure 5.7). Turning off throttling decreased
Lammps performance by 32% and Lulesh by 18%.

5.4.1 Analysis

The primary finding of these experiments is that the addition policy is more important than the replacement
policy. Different addition policies, or even different addition policy parameters, can have a dramatic impact
on performance, while the replacement policy has a more muted effect. Most likely, this is because bringing
pages in which are not frequently used entails a high transfer cost and, unlike a conventional SRAM cache,
is not as necessary.

Of the analyzed policies, there are clear “winners.” The addMFRPU, addMFU, addRAND, and addSCF
all provide good performance over the range of test applications. Each of them present different trade-offs in
the amount of meta-data which must be gathered and stored. The addSCF and addMFRPU policies provide
better performance, but require collection of touchCounts for each page. While addRAND’s performance is
about 5% lower on average, it does not require metadata collection or streaming analysis.

For these small applications, the “stream aware” policies show promise. Applications which have a number
of pages which show streaming behavior (e.g. MiniFE in Figure 5.1) gain a small amount of performance
with stream aware policies.

Optimizing policies requires several trade-offs. Simply maximizing he “hit rate” on the fast memory
is not sufficient to ensure higher performance. For example the addSC/SCLRU policies actually give a
higher hit rate (=40%) than addSCF/SCLRU (=12%), even though addSCF/SCLRU provides better overall
application performance. However, addSC’s lower criteria for addition means that addSC/SCLRU generates
20-70 times more page swaps. These consume considerable bandwidth and hurt performance, even with
swap throttling.

5.5 Large Application Results

Guided by the results from smaller applications, we performed simulations on larger applications (Section 2.1)
focusing on a constrained set of policies.
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5.5.1 Performance Vs. Policy

For replacement policies, we focused on the SCLRU and LRU policies. Across all applications, the LRU
policy performed better than SCLRU by 7-10% for smaller numbers of fast pages, but the effect was negligible
for larger number of fast pages. Generally, if more then é of the memory was “fast” all replacement policies
yielded similar performance (Figure 5.8).
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Figure 5.8: SNAP under different replacement policies, normalized to no “Fast” pages. Replacement policy
is addMFRPU.

Each application was run with the addSCF, addMFRPU, addMFU, and addRAND addition policies.
As expected, addRAND performed poorly, generally giving little improvement over the baseline DDR~only
configuration. For all applications the performance of addSCF and addMFRPU were similar. PENNANT
(Figure 5.9) performed slightly better with the addMFU policy, though for large numbers of “fast” pages
(} or more) or small numbers (35 or less) the difference was negligible. Both SNAP cases (Figure 5.10) saw
addSCF/addMFRPU outperform addMFU substantially except for large numbers of “fast” pages. HPCG
(Figure 5.11) performance was similar for all policies (except addRAND) with a slight advantage using

addSCF.

5.5.2 Fine Tuning

Starting with the basic policies, we examined other parameters to improve performance.
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Like the small applications, the “threshold” value (Figure 5.6) is important. This value is the minimum
number of accesses a page must receive in the time quanta before it is considered for inclusion in the “fast”
memory. Using the addMFRPU/LRU policies for large applications, it appears that a low Threshold value
is gives better performance. This is in contrast to the simple addT/LRU policy for small applications which
gives better performance at high thresholds. Presumably, this is because the larger applications are longer
running and so a selective (i.e. high) threshold is less important. However, it should be noted that a threshold
of zero does not yield the best performance.

Another parameter to explore is page size. This is the size of the block of memory that the policy manages.
Our default is 4KB. The 4KB page size works well for these applications, but is not always optimal. For
PENNANT (Figure 5.13), 4KB (2'?) is the best if 128MB (%) of the memory is “fast”, however for larger
sizes there is little difference. 2KB and 8KB pages have performance which is only slightly lower than 4KB.
SNAP (Figure 5.14) works best with pages of 4, 8, or 16KB, depending on the number of “fast” pages. HPCG
(Figure 5.15) shows better performance the larger the page size is, however the effect is muted beyond 4KB
pages. From these experiments it appears that 4KB pages are a reasonable choice, though larger pages
should still yield acceptable performance. This may be important for reducing overhead (Section 5.5.4).

As with smaller applications (Figure 5.7), throttling page swaps between fast and slow memories when
the DRAM is busy is important. PENNANT performance was reduced by 20% without DRAM throttling.
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5.5.3 Cost & Performance

Automatic management of MLM can improve application performance by 20-380% (Figure 5.16) depending
on the application and the amount of “fast” memory. However, MLM comes with added costs. “Fast”
memory technologies will almost certainly be more expensive in terms of $ per bit of memory. Additionally,
adding extra memory channels or packaging will also impact total system cost.

The exact cost per bit of future memory technologies is difficult to discern, so we examine two scenarios:
a cost per bit (relative to DDR) of 1.3x and 5x. Figure 5.17 shows the performance divided by the cost for
memory systems with ﬁlgth to % of their memory comprised of fast memory. In the case where fast memory
is only 30% more expensive than DDR, the curves are substantially similar to the raw performance trends.
Marginally improved applications (e.g. SNAP) shows diminishing returns after $th (32K pages). For the
5% case, the trade-off is more pronounced. Adding more than %th “fast” memory adds more cost than
performance to PENNANT and HPCG. For SNAP, the overall performance / cost impact is negative — it

would be better to stick with DDR.

5.5.4 Overheads

In addition to the added cost per bit, automatic management also requires additional hardware in the
processor or memory controller (Section 5.3). The largest component of this hardware would be the SRAM
tables required to store the access count information for each page in fast memory.

Conservatively, we estimate that each page in fast memory requires 32 bytes of SRAM storage. Assuming
that SRAM costs 150x per bit as DDR and “fast” memory is 1.3x we can construct a rough cost model
which includes overhead (Figure 5.18). This shows that for large “fast” memories and 4K pages, the cost of
SRAM is considerable. Memory systems with lots of fast memory would spend almost as much on SRAM
as on main memory.

Dividing the performance by the cost (with overhead) makes large fast memories questionable for lower-
performing applications (Figure 5.19. For systems with large amounts of fast memory, manual allocation
may be better.

The high overheads for automatic management may be reduced through a few optimizations. First, page
sizes greater than 4KB would reduce overhead greatly. As shown in Section 5.5.2, many applications continue
to perform well with larger page sizes. This could make automatic management of large fast memories more
tenable. For example, with 50% of the memory “fast” and 4K pages, SNAP’s performance/cost ratio is 83-
92% compared to DDR. However, with 8K pages it is 100-109%. For 16K pages, it is 112-124%. Additionally,
the choice of 32KB for the per-page meta-information is conservative. It should be possible to use much
smaller data structures.

5.5.5 Comparison to Manual Management

We now compare manual and automatic management policies. Note that this comparison comes with an
important caveat — because of the simulation infrastructure available we were unable to use exactly the same
architecture and simulation models in both studies. For the manual study, we model HMC using GoblinHMC
and DRAM using DRAMSim. For the lightweight architecture, we set two of the four memory controllers to
be HMC and two to manage DDR DRAM. In contrast, for automatic we use VaultSim for the HMC model
and DRAMSim for the conventional DRAM. Each of the four memory controllers manages both types of
memory. As such, the manual management’s system is likely to have higher performance — a less accurate
HMC model, increased memory parallelism, and a lower average network latency. Still, the comparison can
tell us the likely trend between the policy types.

With that caveat in mind, we plot the performance of the best manual and the best automatic policy in
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Figure 5.20. As expected, for a given portion of “fast” memory, automatic management generally offers higher
performance than manual management (Figure 5.20). However, looking at the absolute numbers, manual
management of HPCG attains only 38.6% of the performance of automatic management for small sizes of
fast memory (%)7 though at larger sizes it achieves up to 73.4%. Manually managed SNAP consistently
achieves greater than 90% of the performance of automatically managed SNAP. Manual PENNANT ranges
from 40-80% of the performance of automatic management. Because HPCG and PENNANT are especially
sensitive to available memory parallelism, we conclude that the two policy variants likely perform similarly.

Therefore, the costs, benefits, and viability of each policy becomes central. Automatic mangement
requires less programmer effort, but more hardware and a greater capital cost. Manual management on the
other hand can require significant programmer investment and so higher labor costs.
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Figure 5.10: SNAP under different policies, normaliged to no “Fast” pages. Replacement policy is LRU.



HPCG Performance: Addition

6

5

(]
Ea
(]
g =0—3ddMFRPU
&
o 3 =B Series 2
0
= el 3d dRAND
‘+
o2
o addSCF
[ R
—8—3ddMFU

1 . - el — =8 D

0

1024 4096 16384 65536 262144

Pages

Figure 5.11: HPCG under different policies, normalized to no “Fast” pages. Replacement policy is LRU.

99



Performance

Pennant Threshold (AddMFRPU LRU 8192 4KB pg)

1.8
1.6
14
1.2

0.8
0.6
04
0.2

0 10 20 30 40 50 60 70
Threshold

Figure 5.12: Effect of theshold on PENNANT

60



w I
D U owm

Rel. Peform

[N N
m N W

o
o un

Pennant Page size Effects

=8 128 M

=8==256M

10 11 12 13 14 15
Page Size (2”x B)

Figure 5.13: Page size effects: PENNANT

61



Rel. Peform

Rel. Peform

1.6

1.58

1.56

1.54

1.52

1.5

1.48

1.46

1.46

1.45

1.44

143

1.42

1.41

1.4

1.39

1.38

1.37

snap-p0 Pagesize Effects

=B 1 28M

=®—256M

11 12 13 14 15
Page Size (2”x B)

snap-pl Pagesize Effects

=128 M

=—0—256M

11 12 13 14 15
Page Size (2”x B)

62
Figure 5.14: Page size effects: SNAP



35

)
N o

Rel. Peform
=
)

0.5

HPCG Page size Effects

10 11 12 13
Page Size (2”x B)

Figure 5.15: Page size effects: HPCG

63

=128 M

=®—256M

14 15



Performance

6
=8 Pennant
e . sn ap_ p 1
4 P .
Hpcg
3
2
1
0
1024 4096 16384 65536
Figure 5.16: Large application performance
Performance / Cost vs # Fast Pages: Fast 5x Cost Performance / Cost vs. # Fast Pages: Fast x1.3 Cost
25 45
~—8—Pennant . 8 pennant
=®=snap-p0 =®—snap-p0
‘g‘ 2 =8 snap-pl g 35 =8—snap-pl
N “@=Hpcg <3 —&—Hpcg
§ 15 g 25
& 15 : —
1
0.5 0.5

Performance vs. # Fast Pages

1024 4096 16384 65536 1024 4096 16384 65536

Figure 5.17: Large application performance vs. cost

64



Performance / Cost

2.5

Memory System Cost

=== Main Memory

=== SRAM Tabels
=== Total

® 100% Fast

0.5

0

0%

Figure 5.18: Memory system cost, including SRAM tables

4.5

35

25

10% 20%

30%

40%

50%

60%

% Fast Memory

70%

80% 90%

Performance / Cost: Fast x1.3 , SRAM x150

=8 Pennant
=®—snap-p0
=®=snap-pl

@=Hpcg

15

0.5

100%

1024

4096

16384

65536

Figure 5.19: Memory system cost / performance

65



Performance

Performance vs. # Fast Pages

6
==@==Pennant —®— snap-p0
5
Hpcg = «®=-Pennant(M) s
= <®==snap-p0(M) == -HPCG(M)
4
2
/' 2
Pl
Py e
3 e
L — =
L4 ’,
I”,’
< ’
LAl
2 r —_____.l”,/
- .
g;_:_;;...-_----===:--__--_____:=.
1
0
16384 32768 65536 131072

Figure 5.20: Manual vs. automatic comparison

66



Chapter 6

Conclusions & Future Work

6.1 Conclusions

The emergence of high-bandwidth memory components has the potential to address the decades old problem
of the “memory wall” limiting application performance. Components are available today with up to 5X
previous bandwidths and into the future even higher improvements will be possible. However, the higher
bandwidth comes at higher purchase cost and may be available only in limited capacities. We may therefore
be resigned to seeing higher bandwidth memories as part of a larger node with larger, capacities stores also
being provided. Such a drastic change in fundamental node architecture raises some interesting potential
challenges for our existing high-performance scientific code base.

In this study we have evaluated several aspects to this potential view of the future including application
performance in hardware-supported management of resources, operating-system or runtime management
and application/programmer directed. We find an array of impacts on application execution and note that
a one-size fits all does not appear to stand out from the results in all cases.

The selection of data structures for placement in high-bandwidth memory was evaluated in this study
and we find that the selection of such allocations is non-intuitive. Programmers seem to understand which
of their data structures will be the “hottest” in access rates but we often find that such intense accesses are
absorbed by a well functioning cache hierarchy. It is therefore a second collection of “less-hot” data structures
which are the real candidates for high-bandwidth resources. The improvements and new tooling developed
within SST for this study show a potential path to identifying such allocations for complex memory systems
and architectures that are well beyond those available in the laboratories today.

The assessment of automatic hardware management has also found that one of the most important
indicators of system performance is not what page is selected from replacement but which page is selected
for addition into a higher-bandwidth resource.

Complex memory hierarchies are clearly challenging our current thinking about application and algorithm
design. The potential lost performance of mis-calculating what data structures to place where can be
disastrous and therefore it is important that the community has access to scalable and efficient tools and
methodologies to trade off design choices. In this milestone we have extended the SST simulation framework
to address this challenge. Further, we have validated components within the simulation infrastructure to
ensure that our findings are based on accurate predictive mechanisms.

As we look to the future the insights of this study stand out — applications are not comprised entirely of
bandwidth bound kernels. Indeed, a variety of bandwidth, latency, and compute boundedness can be seen
in our results. For the kernels which are bound by latency, next-generation memory systems will clearly
present a significant performance challenge making these kernels a potential bottleneck.
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6.2 Future Work

In this study we have focused uniquely on memory systems comprising of two memory pools but future
designs may opt to increase this further. We note that this may include the addition of other levels in
the memory hierarchy such as non-volatile storage which will be slower than DDR and asymmetric for
read/write operations. Alternatively, multiple pools of memory may be added introducing greater NUMA
or non-uniform performance effects. SST is well positioned as a tool for future studies in this area.

We also intend to evaluate the energy impacts of multi-level memory system design using SST. Since the
introduction of multi-level memory systems can see higher occurrences of data movement it may well be the
case that performance is improved but at the cost of much higher power and energy consumption. Our use
of SST statistics gathering will form a basis for this work and seek to answer the question of whether such
an approach can provide gains in energy efficiency.

6.2.1 Manual Management

The results of manual management techniques indicate a clear need for tools to help identify memory regions
or structures for inclusion in different layers of memory. The MemSieve tool is a first cut of such a tool, but
requires extension to become useful to the broader audience of application developers.

We hope to extend MemSieve to make it easier to use and faster. Specifically, automating the workflow
and simplifying the interface would allow application developers to use the tool. MemSieve can also be made
faster. An open area for exploration is the size of a memory footprint required to adequately identify key
allocation sites. If it is possible to run an application with a much smaller footprint and still get accurate
results for larger footprint runs, the analysis can be performed much more quickly.

Another area for exploration is a combination of automatic management and programmer hints. This
may be used to improve performance and/or reduce overhead.

6.2.2 Automatic Management

The current studies show great promise for automatic management of MLM. We hope to expand upon this
work in several ways.

More detailed modeling of the memory systems and policy overheads will be pursued. This will include
examining the latency sensitivity of the policy unit to determine if parts of the policy decisions can be made
by the Operating System or runtime instead of hardware.

There are many chances to optimize policies and policy parameters. It may be possible to auto-tune
policy parameters or to dynamically select policies. There are also possibilities for programmer or compiler
feedback to guide policies.

The current implementation does not allow accesses to pages that are being transferred between different
layers of memory. This can delay a sizable fraction of accesses (up to 8% for CoMD addSC/LRU). A more
advanced Policy Dispatcher in the MLM Unit may be able to be less restrictive and allow access to pages
which are only partially transfered.

Reducing the hardware overhead of automatic management is critical for many applications and memory
sizes. We will explore larger page sizes, reducing the size of meta-data structures, and compression or caching
of data structures.
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6.3 Recommendations

Finally, we conclude this report with a summary of the recommendations gleaned from the different analyses
performed. For architectural and system design our recommendations are:

e Latency should not be sacrificed for bandwidth (Section 3.3)
e Consideration for the management policy must be part of any architectural trade-off study

e Applications vary widely in their ability to use higher bandwidth, but in general a moderate-to-small
HMC-to-DRAM ratio should be sufficient

e An HMC/HBM is not a conventional cache (higher bandwidth but not lower latency) so conventional
caching policies do not perform well

e For management, we recommend that either a hardware/automatic approach be taken or that the
OS/runtime manage MLM with the ability to leverage memory usage information provided by the
application (“hints”)

For applications we make the following recommendations:

e Use data pools or other techniques to avoid many small calls to malloc
e Very large allocations may be hard to manage efficiently if managing at a malloc granularity

e Try to create program phases (i.e., a particular computation or threaded section) whose memory
footprint fits in the fast memory. This will benefit both automatic and manual management policies.

e An API to enable application writers to manage allocations within libraries is needed

e Tools such as MemSieve will be instrumental for enabling applications to get better performance out
of MLM systems

e The best allocations for HMC/HBM are those that are accessed frequently but not so frequently they
end up in the cache. Identifying such allocations is not always intuitive.

69



70



References

[1]

[13]

[14]

Michael A. Bender, Jonathan W. Berry, Simon D. Hammond, K. Scott Hemmert, Samuel McCauley,
Branden Moore, Benjamin Moseley, Cynthia A. Phillips, David S. Resnick, and Arun Rodrigues. Two-
level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation. In 2015
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, Hyderabad, India,
May 25-29, 2015, pages 835—-846, 2015.

MT Bettencourt. MiniPIC - A Particle-In-Cell (PIC) Code on Unstructured Grids for Next Generation
Platforms. In 2015 IEEE International Conference on Plasma Sciences (ICOPS), pages 1-1. IEEE,
2015.

Z. Chen, N. Xiao, F. Liu, and Y. Zhao. Ssarc: The short-sighted adaptive replacement cache. In High
Performance Computing and Communications, 2009. HPCC ’09. 11th IEEE International Conference
on, pages 551-556, June 2009.

J. Dongarra, M. Heroux, and P. Luszczek. Hpcg benchmark: A new metric for ranking high performance
computing systems. Technical Report UT-EECS-15-736, ECE Department, University of Tennessee,
Knoxville, TN, 2015.

C. R. Ferenbaugh. Pennant: an unstructured mesh mini-app for advanced architecture research. Con-
currency and Computation: Practice and Experience, 27(17):4555-4572, 2015.

Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring, H Carter Edwards,
Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thornquist, and Robert W Numrich. Improving
Performance via Mini-Applications. Technical Report SAND2009-5574, Sandia National Laboratories,
20009.

Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM, Disk, chapter Overview
of DRAMS, pages 315-341. Morgan Kaufmann, 2008.

Jagan Jayaraj, Arun F. Rodrigues, Simon D. Hammond, and Gwendolyn R. Voskuilen. The potential
and perils of multi-level memory. In Proceedings of the 2015 International Symposium on Memory
Systems, MEMSYS 2015, Washington DC, DC, USA, October 5-8, 2015, pages 191-196, 2015.

Theodore Johnson and Dennis Shasha. 2q: A low overhead high performance buffer management
replacement algorithm. In Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB 94, pages 439-450, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

Tan Karlin, Jeff Keasler, and Rob Neely. Lulesh 2.0 updates and changes. Technical Report LLNL-TR-
641973, LLNL, August 2013.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In ACM Sigplan Notices, volume 40, pages 190-200. ACM, 2005.

M. Pavlovic, N. Puzovic, and A. Ramirez. Data placement in hpc architectures with heterogeneous
off-chip memory. In Computer Design (ICCD), 2018 IEEE 31st International Conference on, pages
193-200, Oct 2013.

Steve Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computa-
tional Physics, 117(1):1 — 19, 1995.

Steve Plimpton. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov, March 2016.

71



[15]

[16]

A. F. Rodrigues, K. S. Hemmert, B. W. Barret, C. Kersey, R. Oldfield, M. Weston, R. Risen, J. Cook,
P. Rosenfeld, E. CooperBalls, and B. Jacob. The structural simulation toolkit. SIGMETRICS Perform.
Eval. Rev., 38(4):37-42, 2011.

ChunYi Su, David Roberts, Edgar A. Leén, Kirk W. Cameron, Bronis R. de Supinski, Gabriel H. Loh,
and Dimitrios S. Nikolopoulos. Hpmc: An energy-aware management system of multi-level memory
architectures. In Proceedings of the 2015 International Symposium on Memory Systems, MEMSYS 15,
pages 167-178, New York, NY, USA, 2015. ACM.

Kshitij Sudan, Anirudh Badam, and David Nellans. NAND-Flash: Fast Storage or Slow Memory?
Technical report, University of Utah, 2012.

J. Zerr and R. Baker. SNAP: SN (Discrete Ordinates) Application Proxy, Version 1.07. Technical
Report LA-CC-13-016, Los Alamos National Laboratory, New Mexico, USA, 2016.

72



DISTRIBUTION:

MS 0845 M.W. Glass, 01545
MS 1319 J.A. Ang, 01421

MS 1319 K.S. Hemmert, 01422
MS 1319 J.H. Laros, 01422

MS 1319 S.D. Hammond, 01422
MS 1319 G.R. Voskuilen, 01422
MS 1319 A F. Rodrigues, 01422
MS 1319 R.J. Hoekstra, 01422
MS 1319 M.P. Frank, 01425
MS 1319 J. Aidun, 01425

MS 1319 M.A. Heroux, 01426
MS 1322 K.F. Alvin, 01420

MS 0899 Technical Library, 9536 (electronic copy)

G VU VU U A O O

73



74



v1.37



@ Sandia National Laboratories



	Introduction
	Multi-Level Memory Systems
	The Case For...
	Economic Impacts
	Analysis

	The Case Against...
	Economics
	Management
	Latency


	Three Paths to MLM Management
	Algorithmic
	Manual
	Automatic

	Roadmap

	Methodology
	Applications
	Methodology for Simulating at Scale

	Simulation
	Simulation Improvements
	Architectures
	Validation


	Design Space Exploration
	Potential Performance with HMC
	Validating the Lightweight Model
	Latency and Bandwidth Sensitivity

	Manual Management
	Software Approaches & Trade-offs
	Trade-offs
	Options Explored

	MemSieve: A tool for profiling application memory behavior
	The MemSieve Tool
	Validation

	Analysis
	Malloc Characteristics
	Ideal Malloc Behavior
	Architecture Effect on Dense Mallocs
	Dense Mallocs: What are they?
	Translating MemSieve to Hardware
	Processing-In-Memory and MemSieve


	Comparing Software Allocation Strategies
	Comparing Software Approaches
	Effectiveness of Manual Allocation
	Effect of the Architecture
	Conclusions


	Automatic Management
	Background
	Related Work
	Key Differences

	Early Analysis
	Access Patterns Within A Page
	Multithreaded Access

	Policies
	Addition Policies
	Replacement Policies

	Early Results
	Analysis

	Large Application Results
	Performance Vs. Policy
	Fine Tuning
	Cost & Performance
	Overheads
	Comparison to Manual Management


	Conclusions & Future Work
	Conclusions
	Future Work
	Manual Management
	Automatic Management

	Recommendations

	References

